Classification of regular circle three-webs up to circular transformations
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 1, pp. 95-107

Voir la notice de l'article provenant de la source Math-Net.Ru

A curvilinear three-web formed by three pencils of circles is called a circle web. Generally speaking, the circle three-web is not regular, i.e., it is not locally diffeomorphic to a web formed by three families of parallel straight lines. In this paper, all regular circle three-webs are classified up to circular transformations. The main result is as follows: there exist 48 nonequivalent (with respect to circular transformations) types of regular three-webs. Five of them contain $\infty^3$ nonequivalent webs each, 11 types contain $\infty^2$ nonequivalent webs each, 12 types contain $\infty^1$ nonequivalent webs each; 5 webs admit a one-parameter group of automorphisms.
@article{FPM_2010_16_1_a7,
     author = {V. B. Lazareva},
     title = {Classification of regular circle three-webs up to circular transformations},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {95--107},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_1_a7/}
}
TY  - JOUR
AU  - V. B. Lazareva
TI  - Classification of regular circle three-webs up to circular transformations
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 95
EP  - 107
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_1_a7/
LA  - ru
ID  - FPM_2010_16_1_a7
ER  - 
%0 Journal Article
%A V. B. Lazareva
%T Classification of regular circle three-webs up to circular transformations
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 95-107
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_1_a7/
%G ru
%F FPM_2010_16_1_a7
V. B. Lazareva. Classification of regular circle three-webs up to circular transformations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 1, pp. 95-107. http://geodesic.mathdoc.fr/item/FPM_2010_16_1_a7/