Classification of regular circle three-webs up to circular transformations
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 1, pp. 95-107.

Voir la notice de l'article provenant de la source Math-Net.Ru

A curvilinear three-web formed by three pencils of circles is called a circle web. Generally speaking, the circle three-web is not regular, i.e., it is not locally diffeomorphic to a web formed by three families of parallel straight lines. In this paper, all regular circle three-webs are classified up to circular transformations. The main result is as follows: there exist 48 nonequivalent (with respect to circular transformations) types of regular three-webs. Five of them contain $\infty^3$ nonequivalent webs each, 11 types contain $\infty^2$ nonequivalent webs each, 12 types contain $\infty^1$ nonequivalent webs each; 5 webs admit a one-parameter group of automorphisms.
@article{FPM_2010_16_1_a7,
     author = {V. B. Lazareva},
     title = {Classification of regular circle three-webs up to circular transformations},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {95--107},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_1_a7/}
}
TY  - JOUR
AU  - V. B. Lazareva
TI  - Classification of regular circle three-webs up to circular transformations
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 95
EP  - 107
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_1_a7/
LA  - ru
ID  - FPM_2010_16_1_a7
ER  - 
%0 Journal Article
%A V. B. Lazareva
%T Classification of regular circle three-webs up to circular transformations
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 95-107
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_1_a7/
%G ru
%F FPM_2010_16_1_a7
V. B. Lazareva. Classification of regular circle three-webs up to circular transformations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 1, pp. 95-107. http://geodesic.mathdoc.fr/item/FPM_2010_16_1_a7/

[1] Balabanova R. S., “Shesto'g'lni tri-t'kani ot snopove okr'zhnosti, dva ot koito sa spregnati”, Nauch. tr. Plovdiv. un-t, mat., 11:4 (1973), 128–141 | MR

[2] Blyashke V., Vvedenie v geometriyu tkanei, Fizmatgiz, M., 1959 | MR

[3] Lazareva V. B., “Tri-tkani, obrazovannye semeistvami okruzhnostei na ploskosti”, Differentsialnaya geometriya, KGU, Kalinin, 1977, 49–64 | MR

[4] Lazareva V. B., “Tri-tkani na dvumernoi poverkhnosti v triaksialnom prostranstve”, Differentsialnaya geometriya mnogoobrazii figur, 10, 1979, 54–59 | MR | Zbl

[5] Lazareva V. B., “Parallelizuemye tri-tkani, obrazovannye puchkami okruzhnostei”, Tkani i kvazigruppy, KGU, Kalinin, 1988, 74–77 | MR

[6] Lazareva V. B., Orlova O. V., “Ob odnom klasse shestiugolnykh tri-tkanei, obrazovannykh puchkami okruzhnostei”, Tkani i kvazigruppy, KGU, Kalinin, 1986, 115–119 | MR

[7] Lazareva V. B., Shelekhov A. M., “Konfiguratsii i tkani, porozhdaemye puchkami sfer”, Vestn. Chuvashskogo gos. ped. un-ta im. I. Ya. Yakovleva, 2006, 87–95

[8] Lazareva V. B., Shelekhov A. M., “K probleme klassifikatsii regulyarnykh 4-tkanei, obrazovannykh puchkami sfer”, Izv. vyssh. uchebn. zaved. Matematika, 2007, no. 12, 70–76 | MR

[9] Lazareva V. B., Shelekhov A. M., “O triangulyatsiyakh ploskosti puchkami konik”, Mat. sb., 198:11 (2007), 107–134 | DOI | MR | Zbl

[10] Lazareva V. B., Shelekhov A. M., O triangulyatsii ploskosti puchkami krivykh vtorogo poryadka, Dep. v VINITI 21.01.09b No 25-V2009

[11] Shelekhov A. M., “O tri-tkanyakh, obrazovannykh puchkami okruzhnostei”, Itogi nauki i tekhn. Ser. Sovrem. mat. i eë pril., 32, 2005, 7–28 | MR

[12] Erdogan H. I., Düzlemde 6-gen doku teşkil eden čember demety 3-üzleri, Ph.D. Thesis, Istanbul Teknik Ueniversitesi, Istanbul, 1974

[13] Erdogan H. I., “Triples of circle-pencils forming a hexagonal three-web in $E^2$”, J. Geom., 35:1–2 (1989), 39–65 | DOI | MR | Zbl

[14] Lazareva V. B., Shelekhov A. M., “Around a Blaschke problem in the web theory”, Webs and Quasigroups, 1996–1997, Tver State Univ., Tver, 1997, 65–73 | MR