$r$-tuple almost product structures
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 1, pp. 81-93

Voir la notice de l'article provenant de la source Math-Net.Ru

A generalization of an almost product structure and an almost complex structure on smooth manifolds is constructed. The set of tensor differential invariants of type $(2,1)$ and the set of the differential 2-forms for such structures are constructed. We show how these tensor invariants can be used to solve the classification problem for Monge–Ampère equations and Jacobi equations.
@article{FPM_2010_16_1_a6,
     author = {A. G. Kushner},
     title = {$r$-tuple almost product structures},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {81--93},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_1_a6/}
}
TY  - JOUR
AU  - A. G. Kushner
TI  - $r$-tuple almost product structures
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 81
EP  - 93
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_1_a6/
LA  - ru
ID  - FPM_2010_16_1_a6
ER  - 
%0 Journal Article
%A A. G. Kushner
%T $r$-tuple almost product structures
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 81-93
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_1_a6/
%G ru
%F FPM_2010_16_1_a6
A. G. Kushner. $r$-tuple almost product structures. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 1, pp. 81-93. http://geodesic.mathdoc.fr/item/FPM_2010_16_1_a6/