$r$-tuple almost product structures
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 1, pp. 81-93
Voir la notice de l'article provenant de la source Math-Net.Ru
A generalization of an almost product structure and an almost complex structure on smooth manifolds is constructed. The set of tensor differential invariants of type $(2,1)$ and the set of the differential 2-forms for such structures are constructed. We show how these tensor invariants can be used to solve the classification problem for Monge–Ampère equations and Jacobi equations.
@article{FPM_2010_16_1_a6,
author = {A. G. Kushner},
title = {$r$-tuple almost product structures},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {81--93},
publisher = {mathdoc},
volume = {16},
number = {1},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_1_a6/}
}
A. G. Kushner. $r$-tuple almost product structures. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 1, pp. 81-93. http://geodesic.mathdoc.fr/item/FPM_2010_16_1_a6/