String world surfaces in spaces with compact factor-manifolds
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 1, pp. 171-177.

Voir la notice de l'article provenant de la source Math-Net.Ru

The closed string with point-like masses as the string hadron model is considered in the $D$-dimensional space $\mathcal M=R^{1,3}\times T^{D-4}$, which is the direct product of the Minkowski space and the compact manifold $T^{D-4}=S^1\times\dots\times S^1$ ($(D-4)$-dimensional torus). Exact solutions of dynamical equations are obtained; in a particular case of rotational states, they describe a uniform rotation of the system. These rotational states are classified, their physical properties are studied, and Regge trajectories are determined. Central and linear rotational states are tested for stability with respect to small disturbances. It is shown that the central rotational states are not stable if the central mass it less than some threshold value.
@article{FPM_2010_16_1_a13,
     author = {G. S. Sharov and A. E. Milovidov},
     title = {String world surfaces in spaces with compact factor-manifolds},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {171--177},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_1_a13/}
}
TY  - JOUR
AU  - G. S. Sharov
AU  - A. E. Milovidov
TI  - String world surfaces in spaces with compact factor-manifolds
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 171
EP  - 177
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_1_a13/
LA  - ru
ID  - FPM_2010_16_1_a13
ER  - 
%0 Journal Article
%A G. S. Sharov
%A A. E. Milovidov
%T String world surfaces in spaces with compact factor-manifolds
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 171-177
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_1_a13/
%G ru
%F FPM_2010_16_1_a13
G. S. Sharov; A. E. Milovidov. String world surfaces in spaces with compact factor-manifolds. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 1, pp. 171-177. http://geodesic.mathdoc.fr/item/FPM_2010_16_1_a13/

[1] Grin M., Shvarts Dzh., Vitten E., Teoriya superstrun, Mir, M., 1990

[2] Milovidov A. E., Sharov G. S., “Zamknutye relyativistskie struny v prostranstvakh s netrivialnoi geometriei”, Teor. i matem. fiz., 142:1 (2005), 72–82 | DOI | MR | Zbl

[3] Milovidov A. E., Sharov G. S., “Klassifikatsiya rotatsionnykh sostoyanii zamknutoi struny s massivnymi tochkami”, Vestn. TvGU. Ser. Prikl. mat., 2007, no. 7(55), 131–138

[4] Sharov G. S., “Vozmuschënnye sostoyaniya vraschayuscheisya relyativistskoi struny”, Teor. i matem. fiz., 140:2 (2004), 256–268 | DOI | MR | Zbl

[5] Sharov G. S., “Strunnye modeli glyubola, rotatsionnye sostoyaniya i traektorii Redzhe”, Yadern. fiz., 71:3 (2008), 598–605

[6] Sharov G. S., “String baryonic model “triangle”: Hypocycloidal solutions and the Regge trajectories”, Phys. Rev. D, 58:11 (1998), 114009 | DOI | MR

[7] Sharov G. S., “Quasirotational motions and stability problem in dynamics of string hadron models”, Phys. Rev. D, 62:9 (2000), 094015 | DOI

[8] Sharov G. S., “Unstable rotational states of string models and width of a hadron”, Phys. Rev. D, 79:11 (2009), 114025 | DOI