@article{FPM_2010_16_1_a1,
author = {M. A. Akivis and A. M. Shelekhov},
title = {Cartan{\textendash}Laptev method in the theory of multidimensional three-webs},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {13--38},
year = {2010},
volume = {16},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_1_a1/}
}
M. A. Akivis; A. M. Shelekhov. Cartan–Laptev method in the theory of multidimensional three-webs. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 1, pp. 13-38. http://geodesic.mathdoc.fr/item/FPM_2010_16_1_a1/
[1] Akivis M. A., “O kanonicheskikh razlozheniyakh uravnenii lokalnoi analiticheskoi kvazigruppy”, DAN SSSR, 188:5 (1969), 967–970 | MR | Zbl
[2] Akivis M. A., “O tri-tkanyakh mnogomernykh poverkhnostei”, Itogi nauki i tekhn. Ser. Probl. geom. Tr. geom. sem., 2, 1969, 7–31 | MR | Zbl
[3] Akivis M. A., “O zamknutykh $G$-strukturakh na differentsiruemom mnogoobrazii”, Itogi nauki i tekhn. Ser. Probl. geom. Tr. geom. sem., 7, 1975, 69–79 | MR | Zbl
[4] Akivis M. A., Shelekhov A. M., “O vychislenii tenzorov krivizny i krucheniya mnogomernoi tri-tkani i assotsiatora svyazannoi s nei lokalnoi kvazigruppy”, Sib. mat. zhurn., 12:5 (1971), 953–960 | MR | Zbl
[5] Akivis M. A., Shelekhov A. M., “O kanonicheskikh koordinatakh v lokalnoi analiticheskoi lupe”, Tkani i kvazigruppy, Kalininskii gos. un-t, Kalinin, 1986, 120–124 | MR | Zbl
[6] Billig V. A., Shelekhov A. M., “O klassifikatsii tozhdestv s odnoi peremennoi v gladkoi lokalnoi lupe”, Tkani i kvazigruppy, Kalininskii gos. un-t, Kalinin, 1987, 24–32 | MR | Zbl
[7] Billig V. A., Shelekhov A. M., “Klassifikatsiya tozhdestv dliny 12 poryadka 4 s odnoi peremennoi v lokalnoi analiticheskoi lupe”, Tkani i kvazigruppy, Kalininskii gos. un-t, Kalinin, 1990, 10–18 | MR
[8] Evtushik L. E., Lumiste Yu. G., Ostianu N. M., Shirokov A. P., “Differentsialno-geometricheskie struktury na mnogoobraziyakh”, Itogi nauki i tekhn. Ser. Probl. geom. Tr. geom. sem., 9, 1979, 5–246 | MR | Zbl
[9] Kvazigruppy i neassotsiativnye algebry v fizike, Tartu, 1990 | MR
[10] Kulakov Yu. I., Elementy teorii fizicheskikh struktur, S dobavleniem G. G. Mikhailichenko, Novosibirsk, 1968
[11] Kulakov Yu. I., Vladimirov Yu. S., Karnaukhov A. V., Vvedenie v teoriyu fizicheskikh struktur i binarnuyu geometrofiziku, Arkhimed, M., 1992
[12] Lumiste Yu. G., “Svyaznosti v odnorodnykh rassloeniyakh”, Mat. sb., 69(111):3 (1966), 434–469 | MR | Zbl
[13] Lumiste Yu. G., “Matrichnoe predstavlenie polugolonomnoi differentsialnoi gruppy i strukturnye uravneniya rassloeniya $p$-koreperov”, Itogi nauki i tekhn. Ser. Probl. geom. Tr. geom. sem., 5, 1974, 239–257 | MR | Zbl
[14] Maltsev A. I., “Analiticheskie lupy”, Mat. sb., 36(78):3 (1955), 569–576 | MR | Zbl
[15] Mikhailichenko G. G., “Reshenie funktsionalnykh uravnenii v teorii fizicheskikh struktur”, DAN SSSR, 206:5 (1972), 1056–1058 | Zbl
[16] Shelekhov A. M., O zamknutykh $g$-strukturakh, opredelyaemykh mnogomernymi tri-tkanyami, Dep. v VINITI 25.12 1985, No 8815-V, Kalinin, 49 pp.
[17] Shelekhov A. M., “O vychislenii kovariantnykh proizvodnykh tenzora krivizny mnogomernoi tri-tkani”, Tkani i kvazigruppy, Kalininskii gos. un-t, Kalinin, 1986, 96–103 | MR | Zbl
[18] Shelekhov A. M., “O differentsialno-geometricheskikh ob'ektakh vysshikh poryadkov mnogomernoi tri-tkani”, Itogi nauki i tekhn. Ser. Probl. geom. Tr. geom. sem., 19, 1987, 101–154 | MR | Zbl
[19] Shelekhov A. M., “Klassifikatsiya mnogomernykh tri-tkanei po usloviyam zamykaniya”, Itogi nauki i tekhn. Ser. Probl. geom. Tr. geom. sem., 21, 1989, 109–154 | MR | Zbl
[20] Shelekhov A. M., “Vychislenie vtorykh kovariantnykh proizvodnykh tenzora krivizny mnogomernoi tri-tkani”, Tkani i kvazigruppy, Kalininskii gos. un-t, Kalinin, 1990, 49–55 | MR | Zbl
[21] Akivis M. A., Shelekhov A. M., Geometry and Algebra of Multidimensional Three-Webs, Kluwer Academic, Dordrecht, 1992 | MR | Zbl
[22] Holmes J. P., “Differentiable power associative groupoids”, Pacific J. Math., 42:2 (1972), 391–394 | DOI | MR
[23] Holmes J. P., Sagle A. A., “Analytic $H$-spaces, Campbell–Hausdorff formula, and alternative algebras”, Pacific J. Math., 91:1 (1980), 105–134 | DOI | MR
[24] Santilli R. M., Lie-Admissible Approach to the Hadronic Structure, v. I, Hadronic Press, Palm Harbor, 1978 | MR
[25] Shelekhov A. M., “The $g$-structure associated with a multidimensional hexagonal 3-web is closed”, J. Geom., 35 (1989), 167–176 | DOI | MR | Zbl