Projective analog of Egorov transformation
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 1, pp. 3-12

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the following assertion, which is a projective analog of the well-known Egorov theorem on surfaces in the Euclidean space: a family of lines $v=\mathrm{const}$ on a surface $S$ in $\mathbf P^3$ is a basis for Egorov transformation if and only if the surface bands defined on $S$ by these lines belong to bilinear systems of plane elements. There exist a whole set of Egorov transformations that depend on one function of $v$ with this family of lines as the basis of the correspondence.
@article{FPM_2010_16_1_a0,
     author = {M. A. Akivis},
     title = {Projective analog of {Egorov} transformation},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {3--12},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_1_a0/}
}
TY  - JOUR
AU  - M. A. Akivis
TI  - Projective analog of Egorov transformation
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 3
EP  - 12
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_1_a0/
LA  - ru
ID  - FPM_2010_16_1_a0
ER  - 
%0 Journal Article
%A M. A. Akivis
%T Projective analog of Egorov transformation
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 3-12
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_1_a0/
%G ru
%F FPM_2010_16_1_a0
M. A. Akivis. Projective analog of Egorov transformation. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 1, pp. 3-12. http://geodesic.mathdoc.fr/item/FPM_2010_16_1_a0/