Projective analog of Egorov transformation
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 1, pp. 3-12
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove the following assertion, which is a projective analog of the well-known Egorov theorem on surfaces in the Euclidean space: a family of lines $v=\mathrm{const}$ on a surface $S$ in $\mathbf P^3$ is a basis for Egorov transformation if and only if the surface bands defined on $S$ by these lines belong to bilinear systems of plane elements. There exist a whole set of Egorov transformations that depend on one function of $v$ with this family of lines as the basis of the correspondence.
@article{FPM_2010_16_1_a0,
author = {M. A. Akivis},
title = {Projective analog of {Egorov} transformation},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {3--12},
publisher = {mathdoc},
volume = {16},
number = {1},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_1_a0/}
}
M. A. Akivis. Projective analog of Egorov transformation. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 1, pp. 3-12. http://geodesic.mathdoc.fr/item/FPM_2010_16_1_a0/