Completely integrally closed modules and rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 8, pp. 213-228
Cet article a éte moissonné depuis la source Math-Net.Ru
A ring $A$ is a completely integrally closed right $A$-module if and only if the maximal right ring of quotients $Q_\mathrm{max}(A)$ of $A$ is an injective right $A$-module and $A$ is a right completely integrally closed subring in $Q_\mathrm{max}(A)$. A right Noetherian, right integrally closed ring $A$ is a completely integrally closed right $A$-module.
@article{FPM_2009_15_8_a3,
author = {A. A. Tuganbaev},
title = {Completely integrally closed modules and rings},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {213--228},
year = {2009},
volume = {15},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2009_15_8_a3/}
}
A. A. Tuganbaev. Completely integrally closed modules and rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 8, pp. 213-228. http://geodesic.mathdoc.fr/item/FPM_2009_15_8_a3/
[1] Feis K., Algebra: koltsa, moduli i kategorii, v. 1, Mir, M., 1977
[2] Feis K., Algebra: koltsa, moduli i kategorii, v. 2, Mir, M., 1979 | MR
[3] Anderson F. W., Fuller K. R., Rings and Categories of Modules, Springer, New York, 1992 | MR
[4] Lam T. Y., Lectures on Modules and Rings, Springer, New York, 1999 | MR
[5] Stenström B., Rings of Quotients: An Introduction to Methods of Ring Theory, Springer, Berlin, 1975 | MR | Zbl