Completely integrally closed modules and rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 8, pp. 213-228.

Voir la notice de l'article provenant de la source Math-Net.Ru

A ring $A$ is a completely integrally closed right $A$-module if and only if the maximal right ring of quotients $Q_\mathrm{max}(A)$ of $A$ is an injective right $A$-module and $A$ is a right completely integrally closed subring in $Q_\mathrm{max}(A)$. A right Noetherian, right integrally closed ring $A$ is a completely integrally closed right $A$-module.
@article{FPM_2009_15_8_a3,
     author = {A. A. Tuganbaev},
     title = {Completely integrally closed modules and rings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {213--228},
     publisher = {mathdoc},
     volume = {15},
     number = {8},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2009_15_8_a3/}
}
TY  - JOUR
AU  - A. A. Tuganbaev
TI  - Completely integrally closed modules and rings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2009
SP  - 213
EP  - 228
VL  - 15
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2009_15_8_a3/
LA  - ru
ID  - FPM_2009_15_8_a3
ER  - 
%0 Journal Article
%A A. A. Tuganbaev
%T Completely integrally closed modules and rings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2009
%P 213-228
%V 15
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2009_15_8_a3/
%G ru
%F FPM_2009_15_8_a3
A. A. Tuganbaev. Completely integrally closed modules and rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 8, pp. 213-228. http://geodesic.mathdoc.fr/item/FPM_2009_15_8_a3/

[1] Feis K., Algebra: koltsa, moduli i kategorii, v. 1, Mir, M., 1977

[2] Feis K., Algebra: koltsa, moduli i kategorii, v. 2, Mir, M., 1979 | MR

[3] Anderson F. W., Fuller K. R., Rings and Categories of Modules, Springer, New York, 1992 | MR

[4] Lam T. Y., Lectures on Modules and Rings, Springer, New York, 1999 | MR

[5] Stenström B., Rings of Quotients: An Introduction to Methods of Ring Theory, Springer, Berlin, 1975 | MR | Zbl