On conjugacy in a~Chevalley group of large Abelian subgroups of the unipotent subgroup
Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 7, pp. 205-216.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $U$ be the unipotent subgroup of a Chevalley group over a finite field. The well-known problem about describing the set of “large” (of maximal order) Abelian subgroups in $U$ of exceptional type is investigated. The description of normal large Abelian subgroups in $U$ was established earlier. It is proved that each large Abelian subgroup from $U$ is conjugate in the Chevalley group of type $F_4$ over a finite field of characteristic not equal to 2 to a normal subgroup in $U$. It is shown that for the groups $U$ of type $G_2$ and $^3D_4$ the similar conclusion is not true.
@article{FPM_2009_15_7_a9,
     author = {G. S. Suleimanova},
     title = {On conjugacy in {a~Chevalley} group of large {Abelian} subgroups of the unipotent subgroup},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {205--216},
     publisher = {mathdoc},
     volume = {15},
     number = {7},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2009_15_7_a9/}
}
TY  - JOUR
AU  - G. S. Suleimanova
TI  - On conjugacy in a~Chevalley group of large Abelian subgroups of the unipotent subgroup
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2009
SP  - 205
EP  - 216
VL  - 15
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2009_15_7_a9/
LA  - ru
ID  - FPM_2009_15_7_a9
ER  - 
%0 Journal Article
%A G. S. Suleimanova
%T On conjugacy in a~Chevalley group of large Abelian subgroups of the unipotent subgroup
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2009
%P 205-216
%V 15
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2009_15_7_a9/
%G ru
%F FPM_2009_15_7_a9
G. S. Suleimanova. On conjugacy in a~Chevalley group of large Abelian subgroups of the unipotent subgroup. Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 7, pp. 205-216. http://geodesic.mathdoc.fr/item/FPM_2009_15_7_a9/

[1] Burbaki N., Gruppy i algebry Li. Glavy IV–VI, Mir, M., 1972 | MR | Zbl

[2] Vdovin E. P., “Bolshie abelevy unipotentnye podgruppy konechnykh grupp Shevalle”, Algebra i logika, 40:5 (2001), 523–544 | MR | Zbl

[3] Kondratev A. S., “Podgruppy konechnykh grupp Shevalle”, Uspekhi mat. nauk, 41:1(247) (1986), 57–96 | MR | Zbl

[4] Levchuk V. M., “Avtomorfizmy unipotentnykh podgrupp grupp lieva tipa malykh rangov”, Algebra i logika, 29:2 (1990), 141–161 | MR | Zbl

[5] Levchuk V. M., Suleimanova G. S., “Normalnoe stroenie unipotentnoi podgruppy gruppy lieva tipa i smezhnye voprosy”, Dokl. RAN, 419:5 (2008), 595–598 | MR | Zbl

[6] Levchuk V. M., Suleimanova G. S., “Avtomorfizmy i normalnoe stroenie unipotentnykh podgrupp finitarnykh grupp Shevalle”, Tr. IMM, 15, no. 2, 2009, 133–142 | Zbl

[7] Maltsev A. I., “Kommutativnye podalgebry poluprostykh algebr Li”, Izv. AN SSSR. Ser. mat., 9:4 (1945), 291–300 | MR | Zbl

[8] Steinberg R., Lektsii o gruppakh Shevalle, Mir, M., 1975 | MR | Zbl

[9] Barry M. J. J., “Large Abelian subgroups of Chevalley groups”, J. Aust. Math. Soc. Ser. A, 27:1 (1979), 59–87 | DOI | MR | Zbl

[10] Barry M. J. J., Wong W. J., “Abelian 2-subgroups of finite symplectic groups in characteristic 2”, J. Aust. Math. Soc. Ser. A, 33:3 (1982), 345–350 | DOI | MR | Zbl

[11] Carter R., Simple Groups of Lie Type, Wiley, New York, 1972 | MR | Zbl

[12] Gupta C. K., Levchuk V. M., Ushakov Yu. Yu., “Hypercentral and monic automorphisms of classical algebras, rings and groups”, J. Sib. Federal Univ. Mathematics and Physics, 1:4 (2008), 280–290

[13] Levchuk V. M., Suleymanova G. S., Voitenko T. Yu., “Some questions for the unipotent subgroup of the Chevalley group”, Tezisy dokl. mezhdunar. konf. “Algebra i eë prilozheniya”, Krasnoyarsk, 2007, 168–169

[14] Wong W. J., “Abelian unipotent subgroups of finite orthogonal groups”, J. Aust. Math. Soc. Ser. A, 32:2 (1982), 223–245 | DOI | MR | Zbl

[15] Wong W. J., “Abelian unipotent subgroups of finite unitary and symplectic groups”, J. Aust. Math. Soc. Ser. A, 33:2 (1982), 331–344 | DOI | MR | Zbl