Curvature and Tachibana numbers
Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 6, pp. 211-222

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this paper is to define the $r$th Tachibana number $t_r$ of an $n$-dimensional closed and oriented Riemannian manifold $(M,g)$ as the dimension of the space of all conformal Killing $r$-forms for $r=1,2,\dots,n-1$ and to formulate some properties of these numbers as an analogue to properties of the $r$th Betti number $b_r$ of a closed and oriented Riemannian manifold.
@article{FPM_2009_15_6_a13,
     author = {S. E. Stepanov},
     title = {Curvature and {Tachibana} numbers},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {211--222},
     publisher = {mathdoc},
     volume = {15},
     number = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2009_15_6_a13/}
}
TY  - JOUR
AU  - S. E. Stepanov
TI  - Curvature and Tachibana numbers
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2009
SP  - 211
EP  - 222
VL  - 15
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2009_15_6_a13/
LA  - ru
ID  - FPM_2009_15_6_a13
ER  - 
%0 Journal Article
%A S. E. Stepanov
%T Curvature and Tachibana numbers
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2009
%P 211-222
%V 15
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2009_15_6_a13/
%G ru
%F FPM_2009_15_6_a13
S. E. Stepanov. Curvature and Tachibana numbers. Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 6, pp. 211-222. http://geodesic.mathdoc.fr/item/FPM_2009_15_6_a13/