Curvature and Tachibana numbers
Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 6, pp. 211-222.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this paper is to define the $r$th Tachibana number $t_r$ of an $n$-dimensional closed and oriented Riemannian manifold $(M,g)$ as the dimension of the space of all conformal Killing $r$-forms for $r=1,2,\dots,n-1$ and to formulate some properties of these numbers as an analogue to properties of the $r$th Betti number $b_r$ of a closed and oriented Riemannian manifold.
@article{FPM_2009_15_6_a13,
     author = {S. E. Stepanov},
     title = {Curvature and {Tachibana} numbers},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {211--222},
     publisher = {mathdoc},
     volume = {15},
     number = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2009_15_6_a13/}
}
TY  - JOUR
AU  - S. E. Stepanov
TI  - Curvature and Tachibana numbers
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2009
SP  - 211
EP  - 222
VL  - 15
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2009_15_6_a13/
LA  - ru
ID  - FPM_2009_15_6_a13
ER  - 
%0 Journal Article
%A S. E. Stepanov
%T Curvature and Tachibana numbers
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2009
%P 211-222
%V 15
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2009_15_6_a13/
%G ru
%F FPM_2009_15_6_a13
S. E. Stepanov. Curvature and Tachibana numbers. Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 6, pp. 211-222. http://geodesic.mathdoc.fr/item/FPM_2009_15_6_a13/

[1] Besse A., Mnogoobraziya Einshteina, Nauka, M., 1990

[2] Burginon Zh.-P., “Formuly Veitsenbeka v razmernosti 4”, Chetyrëkhmernaya rimanova geometriya, Mir, M., 1985, 260–279 | MR

[3] Novikov S. P., “Topologiya”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 12, VINITI AN SSSR, M., 1986, 5–252 | MR | Zbl

[4] De Ram Zh., Differentsiruemye mnogoobraziya, IL, M., 1956

[5] Stepanov S. E., “Ob izomorfizme prostranstv konformno killingovykh form”, Differentsialnaya geometriya mnogoobrazii figur, 31, 2000, 81–84 | MR | Zbl

[6] Stepanov S. E., “O tenzore Killinga–Yano”, Teor. i matem. fiz., 134:3 (2003), 382–387 | DOI | MR | Zbl

[7] Stepanov S. E., “Novyi silnyi laplasian na differentsialnykh formakh”, Mat. zametki, 76:3 (2004), 452–458 | DOI | MR | Zbl

[8] Stepanov S. E., “Teoremy ischeznoveniya v affinnoi, rimanovoi i lorentsevoi geometriyakh”, Fundament. i prikl. mat., 11:1 (2005), 35–84 | MR | Zbl

[9] Stepanov S. E., “O nekotorykh konformnykh i proektivnykh skalyarnykh invariantakh rimanova mnogoobraziya”, Mat. zametki, 80:6 (2006), 902–907 | DOI | MR | Zbl

[10] Stepanov S. E., Isaev V. M., “Primery killingovoi i konformno killingovoi form”, Differentsialnaya geometriya mnogoobrazii figur, 32, 2001, 57–72

[11] Yano K., Bokhner S., Krivizna i chisla Betti, IL, M., 1957 | MR

[12] Benn I. M., Charlton P. P., “Dirac symmetry operators from conformal Killing–Yano tensors”, Classical Quantum Gravity, 14 (1997), 1037–1042 | DOI | MR | Zbl

[13] Branson T., “Stein–Weiss operators and ellipticity”, J. Funct. Anal., 151:2 (1997), 334–383 | DOI | MR | Zbl

[14] Kashiwada T., “On conformal Killing tensor”, Natur. Sci. Rep. Ochanomizu Univ., 19 (1968), 67–74 | MR | Zbl

[15] Kora M., “On conformal Killing forms and the proper space of $\Delta$ for $p$-forms”, Math. J. Okayama Univ., 22 (1980), 195–204 | MR | Zbl

[16] Mikeš J., “On existence of nontrivial global geodesic mappings of $n$-dimensional compact surfaces of revolution”, Proc. Conf. Differential Geometry and Its Applications (August 27 – September 2, 1989, Brno, Czechoslovakia), Word Scientific Press, Singapore, 1990, 129–137 | MR | Zbl

[17] Palais R. S., Seminar on the Atiyah–Singer index theorem, Annals of Math. Studies, 57, Princeton Univ. Press, Princeton, 1965 | MR

[18] Petersen P., Riemannian Geometry, Grad. Texts Math., 171, Springer, New York, 1997 | MR

[19] Stepanov S. E., “On a generalization of Kashiwada theorem”, Webs and Quasigroups, Tver State Univ. Press, Tver, 1999, 162–167 | Zbl

[20] Stepanov S. E., “New theorem of duality and its applications”, Noveishie problemy teorii polya. 1999–2000, Izd-vo KGU, Kazan, 2000, 373–376

[21] Stepanov S. E., “On conformal Killing $2$-form of the electromagnetic field”, J. Geom. Phys., 33 (2000), 191–209 | DOI | MR | Zbl

[22] Stepanov S. E., “On analogue of the Poincaré duality theorem for Betti Numbers”, Abstracts of the Int. Conf. “Differential Equations and Topology” dedicated to the Centennial Anniversary of L. S. Pontryagin (Moscow, June 17–22, 2008), Steklov Mathematical Institute of the Russian Academy of Sciences, Moscow; Lomonosov Moscow State University, Moscow, 2008, 456–457

[23] Tachibana Sh., “On Killing tensor in a Riemannian space”, Tôhoku Math. J., 20 (1968), 257–264 | DOI | MR | Zbl

[24] Tachibana Sh., “On conformal Killing tensor in a Riemannian space”, Tôhoku Math. J., 21 (1969), 56–64 | DOI | MR | Zbl