Curvature and Tachibana numbers
Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 6, pp. 211-222
Voir la notice de l'article provenant de la source Math-Net.Ru
The purpose of this paper is to define the $r$th Tachibana number $t_r$ of an $n$-dimensional closed and oriented Riemannian manifold $(M,g)$ as the dimension of the space of all conformal Killing $r$-forms for $r=1,2,\dots,n-1$ and to formulate some properties of these numbers as an analogue to properties of the $r$th Betti number $b_r$ of a closed and oriented Riemannian manifold.
@article{FPM_2009_15_6_a13,
author = {S. E. Stepanov},
title = {Curvature and {Tachibana} numbers},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {211--222},
publisher = {mathdoc},
volume = {15},
number = {6},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2009_15_6_a13/}
}
S. E. Stepanov. Curvature and Tachibana numbers. Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 6, pp. 211-222. http://geodesic.mathdoc.fr/item/FPM_2009_15_6_a13/