Filtering of monotonic convex noise-distorted signals and estimates of positions of special points
Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 6, pp. 15-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of an unknown signal filtering has been solved on the basis of mean-square approximation of the given signal segment with known monotonicity and convexity. Also the estimates of the positions of special points (local extremum and inflection points) are given. The estimates given minimize the maximum estimate error with the guaranteed reliability level.
@article{FPM_2009_15_6_a1,
     author = {D. S. Demin and A. I. Chulichkov},
     title = {Filtering of monotonic convex noise-distorted signals and estimates of positions of special points},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {15--31},
     publisher = {mathdoc},
     volume = {15},
     number = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2009_15_6_a1/}
}
TY  - JOUR
AU  - D. S. Demin
AU  - A. I. Chulichkov
TI  - Filtering of monotonic convex noise-distorted signals and estimates of positions of special points
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2009
SP  - 15
EP  - 31
VL  - 15
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2009_15_6_a1/
LA  - ru
ID  - FPM_2009_15_6_a1
ER  - 
%0 Journal Article
%A D. S. Demin
%A A. I. Chulichkov
%T Filtering of monotonic convex noise-distorted signals and estimates of positions of special points
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2009
%P 15-31
%V 15
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2009_15_6_a1/
%G ru
%F FPM_2009_15_6_a1
D. S. Demin; A. I. Chulichkov. Filtering of monotonic convex noise-distorted signals and estimates of positions of special points. Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 6, pp. 15-31. http://geodesic.mathdoc.fr/item/FPM_2009_15_6_a1/

[1] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1980 | MR

[2] Zhivotnikov G. S., “O zadache optimalnogo otsenivaniya parametrov ob'ekta po ego izobrazheniyu”, Matematicheskie metody raspoznavaniya obrazov, Doklady XI Vserossiiskoi konferentsii, M., 2003

[3] Zakharchenko A. A., Morfologicheskie metody izmereniya relefa poverkhnosti s pomoschyu opticheskogo mikroskopa, Dis. $\dots$ kand. fiz.-mat. nauk, M., 2006

[4] Zakharchenko A. A., Chulichkov A. I., “Izmerenie mikrorelefa poverkhnosti po naboru izobrazhenii s razlichnym polozheniem fokusa”, Izmeritelnaya tekhnika, no. 1, 2007, 14–17

[5] Pytev Yu. P., “Morfologicheskii analiz izobrazhenii”, DAN SSSR, 269:5 (1983), 1061–1064 | MR | Zbl

[6] Pytev Yu. P., “Zadachi morfologicheskogo analiza izobrazhenii”, Matematicheskie metody issledovaniya prirodnykh resursov Zemli iz kosmosa, Nauka, M., 1984 | MR

[7] Pytev Yu. P., Metody matematicheskogo modelirovaniya izmeritelno-vychislitelnykh sistem, Fizmatlit, M., 2002 | MR | Zbl

[8] Chulichkov A. I., Osnovy teorii izmeritelno-vychislitelnykh sistem. Stokhasticheskie lineinye izmeritelno-vychislitelnye sistemy, Izd-vo Tambovskogo gos. tekh. un-ta, Tambov, 2000

[9] Chulichkov A. I., Kulichkov S. N., Dëmin D. S., “Otsenki otnositelnogo vremeni zaderzhki signalov, osnovannye na analize ikh formy”, Vestn. Mosk. un-ta. Ser. 3. Fizika, astronomiya, 2007, no. 6, 17–21 | MR

[10] Chulichkov A. I., Morozova I. V., “Klassifikatsiya razmytykh izobrazhenii i otsenka parametrov sistemy registratsii metodami morfologicheskogo analiza”, Intellekt. sist., 9:1–4 (2005), 321–344

[11] The MathWorks, Optimization Toolbox User's Guide, 2008