On the classification of bases in $P_k$ according to the decidability of the completeness problem for automata
Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 3, pp. 33-47
Voir la notice de l'article provenant de la source Math-Net.Ru
The completeness problem for bases of the form $\Phi\cup\nu$, where $\Phi\subseteq P_k$ and $\nu$ is a finite system of automaton functions, is considered. Previously, the problem for $k=2$ was solved by the author; it was also shown that there is an algorithm for determining the completeness of the system $\Phi\cup\nu$ when $[\Phi]=P_k$. The article is concerned with the case where $[\Phi]$ is the maximal (precomplete) class in $P_k$. The problem of completeness for systems $\Phi\cup\nu$ is shown to be undecidable if $\Phi$ is embedded in a Slupecki class and algorithmically decidable if $\Phi$ contains the preserving class of all constants. Thus, the bases in $P_k$, $k\ge3$, can be classified according to their ability to guarantee the decidability of the completeness problem for automaton functions.
@article{FPM_2009_15_3_a4,
author = {D. N. Babin},
title = {On the classification of bases in $P_k$ according to the decidability of the completeness problem for automata},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {33--47},
publisher = {mathdoc},
volume = {15},
number = {3},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2009_15_3_a4/}
}
TY - JOUR AU - D. N. Babin TI - On the classification of bases in $P_k$ according to the decidability of the completeness problem for automata JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2009 SP - 33 EP - 47 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2009_15_3_a4/ LA - ru ID - FPM_2009_15_3_a4 ER -
%0 Journal Article %A D. N. Babin %T On the classification of bases in $P_k$ according to the decidability of the completeness problem for automata %J Fundamentalʹnaâ i prikladnaâ matematika %D 2009 %P 33-47 %V 15 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2009_15_3_a4/ %G ru %F FPM_2009_15_3_a4
D. N. Babin. On the classification of bases in $P_k$ according to the decidability of the completeness problem for automata. Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 3, pp. 33-47. http://geodesic.mathdoc.fr/item/FPM_2009_15_3_a4/