Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2009_15_3_a2, author = {D. V. Alexeev}, title = {Neural network approximation of several variable functions}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {9--21}, publisher = {mathdoc}, volume = {15}, number = {3}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2009_15_3_a2/} }
D. V. Alexeev. Neural network approximation of several variable functions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 3, pp. 9-21. http://geodesic.mathdoc.fr/item/FPM_2009_15_3_a2/
[1] Arnold V. I., “O predstavlenii lyuboi nepreryvnoi funktsii trëkh peremennykh v vide summy funktsii ne bolee dvukh peremennykh”, DAN SSSR, 114:4 (1957), 679–681 | MR | Zbl
[2] Arnold V. I., “O predstavlenii funktsii neskolkikh peremennykh v vide superpozitsii funktsii menshego chisla peremennykh”, Mat. prosveschenie, 3 (1958), 41–61 | Zbl
[3] Babin D. N., “O polnote dvukhmestnykh ogranichenno determinirovannykh funktsii otnositelno superpozitsii”, Diskret. mat., 1:4 (1989), 86–91 | MR | Zbl
[4] Bernshtein S. N., “O nailuchshem priblizhenii nepreryvnykh funktsii posredstvom mnogochlenov dannoi stepeni”, Sobr. soch., T. 2, Izd-vo AN SSSR, M., 1952, 11–104
[5] Vitushkin A. G., Khenkin G. M., “Lineinye superpozitsii funktsii”, Uspekhi mat. nauk, 22:1 (1967), 77–124 | MR | Zbl
[6] Kolmogorov A. N., “O predstavlenii nepreryvnykh funktsii neskolkikh peremennykh superpozitsiyami nepreryvnykh funktsii menshego chisla peremennykh”, DAN SSSR, 108 (1956), 179–182 | MR | Zbl
[7] Kolmogorov A. N., “O predstavlenii nepreryvnykh funktsii neskolkikh peremennykh v vide superpozitsii nepreryvnykh funktsii odnogo peremennogo i slozheniya”, DAN SSSR, 114 (1957), 953–956 | MR | Zbl
[8] Mak-Kallok U., Pitts U., “Logicheskoe ischislenie idei, otnosyaschikhsya k nervnoi aktivnosti”, Avtomaty, Izd. inostr. lit., M., 1956, 362–384
[9] Marchenkov S. S., “Ob odnom metode analiza superpozitsii nepreryvnykh funktsii”, Problemy kibernetiki, 37, Nauka, M., 1980, 5–17 | MR
[10] Minskii M., Peipert S., Perseptrony, Mir, M., 1971
[11] Rozenblatt F., Printsipy neirodinamiki. Pertseptron i teoriya mekhanizmov mozga, Mir, M., 1965
[12] Cybenko G., “Approximations by superpositions of sigmoidal functions”, Math. Control Signals Systems, 2 (1989), 303–314 | DOI | MR | Zbl
[13] Funahashi K., “On the approximate realization of continuous mappings by neural networks”, Neural Networks, 2:3 (1989), 183–192 | DOI
[14] Jackson D., Über die Genauigkeit der Annäherung stetiger Funktionen durch ganze rationale Funktionen gegebenen Grades und trigonometrische Summen gegebener Ordnung, Preisschrift und Inaugural Dissertation, Göttingen, 1911 | Zbl
[15] Jackson D., The Theory of Approximation, Colloq. Publ., 11, Amer. Math. Soc., 1930 | MR
[16] Hecht-Nielsen R., “Kolmogorov's mapping neural network existence theorem”, IEEE First Annual Int. Conf. on Neural Networks, Vol. 3, San Diego, 1987, 11–13
[17] Hornick K., Stinchcombe M., White H., “Multilayer feedforward networks are universal approximators”, Neural Networks, 2:5 (1989), 359–366 | DOI
[18] Slupecki J., “Kryterium pelnosci wielowartosciowych systemow rachunkow zdan”, C. R. Classe III, 32:1–3 (1939), 102–109
[19] White H., Gallant A. R., Hornik K., Stinchcombe M., Wooldridge J., Artificial Neural Networks: Approximation and Learning Theory, Blackwell, Cambridge, MA, 1992 | MR