Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2009_15_2_a8, author = {M. Yu. Trofimov and P. S. Petrov}, title = {On the application of nonstationary form of the {Tappert} equation as an artificial boundary condition}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {191--206}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2009_15_2_a8/} }
TY - JOUR AU - M. Yu. Trofimov AU - P. S. Petrov TI - On the application of nonstationary form of the Tappert equation as an artificial boundary condition JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2009 SP - 191 EP - 206 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2009_15_2_a8/ LA - ru ID - FPM_2009_15_2_a8 ER -
%0 Journal Article %A M. Yu. Trofimov %A P. S. Petrov %T On the application of nonstationary form of the Tappert equation as an artificial boundary condition %J Fundamentalʹnaâ i prikladnaâ matematika %D 2009 %P 191-206 %V 15 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2009_15_2_a8/ %G ru %F FPM_2009_15_2_a8
M. Yu. Trofimov; P. S. Petrov. On the application of nonstationary form of the Tappert equation as an artificial boundary condition. Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 2, pp. 191-206. http://geodesic.mathdoc.fr/item/FPM_2009_15_2_a8/
[1] Antoine X., Arnold A., Besse C., Ehrhardt M., Schädle A., “A review of artificial boundary conditions for the Schrödinger equation”, Comm. Comp. Phys., 4:4 (2008), 729–796 | MR
[2] Berenger J.-P., “A perfectly matched layer for the absorbtion of electromagnetic waves”, J. Comput. Phys., 114 (1994), 185–200 | DOI | MR | Zbl
[3] Engquist B., Majda A., “Absorbing boundary conditions for the numerical simulation of waves”, Math. Comput., 31:139 (1977), 639–651 | DOI | MR
[4] Engquist B., Majda A., “A nonstationary form of the range refraction parabolic equation and its application as an artificial boundary condition for the wave equation in a waveguide”, Europhys. Lett. (to appear)
[5] Gordienko V. M., “Un problème mixte pour l'équation vectorielle des ondes: Cas de dissipation de l'energie; Cas mal poses”, C. R. Acad. Sci. Paris. Sér. A, 288:10 (1979), 547–550 | MR | Zbl
[6] Hagstrom T., De Castro M., Givoli D., Tzemach D., “Local high-order absorbing boundary conditions for time-dependent waves in guides”, J. Comput. Acoust., 15:1 (2007), 1–22 | DOI | MR | Zbl
[7] Hagstrom T., Mar-Or A., Givoli D., “High-order local absorbing conditions for the wave equation: Extensions and improvements”, J. Comput. Phys., 227:6 (2008), 3322–3357 | DOI | MR | Zbl
[8] Higdon R. L., “Absorbing boundary conditions for difference approximations to the multi-dimensional wave equation”, Math. Comput., 47 (1986), 437–459 | DOI | MR | Zbl
[9] Higdon R. L., “Numerical absorbing boundary conditions for the wave equation”, Math. Comput., 49 (1987), 65–90 | DOI | MR | Zbl
[10] Nazaikinskii V. E., Shatalov V. E., Sternin B. Yu., Methods of Noncommutative Analysis, Walter de Gruyter, Berlin, 1996 | MR
[11] Tappert F., “The parabolic approximation method”, Wave Propagation and Underwater Acoustics, Lect. Notes Phys., 70, eds. J. B. Keller, J. B. Papadakis, Springer, Berlin, 1977, 224–287 | DOI | MR