On the application of nonstationary form of the Tappert equation as an artificial boundary condition
Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 2, pp. 191-206.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a nonstationary analog of the range refraction parabolic equation is derived. A new approach to the derivation of Tappert's operator asymptotic formula with the use of noncommutative analysis is presented. The obtained nonstationary equation is proposed as an artificial boundary condition for the wave equation in underwater acoustics. This form of artificial boundary condition has low computational cost and systematically takes into account variations of sound speed. This is confirmed by various numerical experiments, including propagation of normal modes and wave fields produced by point source.
@article{FPM_2009_15_2_a8,
     author = {M. Yu. Trofimov and P. S. Petrov},
     title = {On the application of nonstationary form of the {Tappert} equation as an artificial boundary condition},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {191--206},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2009_15_2_a8/}
}
TY  - JOUR
AU  - M. Yu. Trofimov
AU  - P. S. Petrov
TI  - On the application of nonstationary form of the Tappert equation as an artificial boundary condition
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2009
SP  - 191
EP  - 206
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2009_15_2_a8/
LA  - ru
ID  - FPM_2009_15_2_a8
ER  - 
%0 Journal Article
%A M. Yu. Trofimov
%A P. S. Petrov
%T On the application of nonstationary form of the Tappert equation as an artificial boundary condition
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2009
%P 191-206
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2009_15_2_a8/
%G ru
%F FPM_2009_15_2_a8
M. Yu. Trofimov; P. S. Petrov. On the application of nonstationary form of the Tappert equation as an artificial boundary condition. Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 2, pp. 191-206. http://geodesic.mathdoc.fr/item/FPM_2009_15_2_a8/

[1] Antoine X., Arnold A., Besse C., Ehrhardt M., Schädle A., “A review of artificial boundary conditions for the Schrödinger equation”, Comm. Comp. Phys., 4:4 (2008), 729–796 | MR

[2] Berenger J.-P., “A perfectly matched layer for the absorbtion of electromagnetic waves”, J. Comput. Phys., 114 (1994), 185–200 | DOI | MR | Zbl

[3] Engquist B., Majda A., “Absorbing boundary conditions for the numerical simulation of waves”, Math. Comput., 31:139 (1977), 639–651 | DOI | MR

[4] Engquist B., Majda A., “A nonstationary form of the range refraction parabolic equation and its application as an artificial boundary condition for the wave equation in a waveguide”, Europhys. Lett. (to appear)

[5] Gordienko V. M., “Un problème mixte pour l'équation vectorielle des ondes: Cas de dissipation de l'energie; Cas mal poses”, C. R. Acad. Sci. Paris. Sér. A, 288:10 (1979), 547–550 | MR | Zbl

[6] Hagstrom T., De Castro M., Givoli D., Tzemach D., “Local high-order absorbing boundary conditions for time-dependent waves in guides”, J. Comput. Acoust., 15:1 (2007), 1–22 | DOI | MR | Zbl

[7] Hagstrom T., Mar-Or A., Givoli D., “High-order local absorbing conditions for the wave equation: Extensions and improvements”, J. Comput. Phys., 227:6 (2008), 3322–3357 | DOI | MR | Zbl

[8] Higdon R. L., “Absorbing boundary conditions for difference approximations to the multi-dimensional wave equation”, Math. Comput., 47 (1986), 437–459 | DOI | MR | Zbl

[9] Higdon R. L., “Numerical absorbing boundary conditions for the wave equation”, Math. Comput., 49 (1987), 65–90 | DOI | MR | Zbl

[10] Nazaikinskii V. E., Shatalov V. E., Sternin B. Yu., Methods of Noncommutative Analysis, Walter de Gruyter, Berlin, 1996 | MR

[11] Tappert F., “The parabolic approximation method”, Wave Propagation and Underwater Acoustics, Lect. Notes Phys., 70, eds. J. B. Keller, J. B. Papadakis, Springer, Berlin, 1977, 224–287 | DOI | MR