On the application of nonstationary form of the Tappert equation as an artificial boundary condition
Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 2, pp. 191-206

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a nonstationary analog of the range refraction parabolic equation is derived. A new approach to the derivation of Tappert's operator asymptotic formula with the use of noncommutative analysis is presented. The obtained nonstationary equation is proposed as an artificial boundary condition for the wave equation in underwater acoustics. This form of artificial boundary condition has low computational cost and systematically takes into account variations of sound speed. This is confirmed by various numerical experiments, including propagation of normal modes and wave fields produced by point source.
@article{FPM_2009_15_2_a8,
     author = {M. Yu. Trofimov and P. S. Petrov},
     title = {On the application of nonstationary form of the {Tappert} equation as an artificial boundary condition},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {191--206},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2009_15_2_a8/}
}
TY  - JOUR
AU  - M. Yu. Trofimov
AU  - P. S. Petrov
TI  - On the application of nonstationary form of the Tappert equation as an artificial boundary condition
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2009
SP  - 191
EP  - 206
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2009_15_2_a8/
LA  - ru
ID  - FPM_2009_15_2_a8
ER  - 
%0 Journal Article
%A M. Yu. Trofimov
%A P. S. Petrov
%T On the application of nonstationary form of the Tappert equation as an artificial boundary condition
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2009
%P 191-206
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2009_15_2_a8/
%G ru
%F FPM_2009_15_2_a8
M. Yu. Trofimov; P. S. Petrov. On the application of nonstationary form of the Tappert equation as an artificial boundary condition. Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 2, pp. 191-206. http://geodesic.mathdoc.fr/item/FPM_2009_15_2_a8/