Finite solvable groups in which the Sylow $p$-subgroups are either bicyclic or of order~$p^3$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 2, pp. 121-131
Voir la notice de l'article provenant de la source Math-Net.Ru
All groups considered in this paper will be finite. Our main result here is the following theorem. Let $G$ be a solvable group in which the Sylow $p$-subgroups are either bicyclic or of order $p^3$ for any $p\in\pi(G)$. Then the derived length of $G$ is at most 6. In particular, if $G$ is an $\mathrm A_4$- free group, then the following statements are true: (1) $G$ is a dispersive group; (2) if no prime $q\in\pi(G)$ divides $p^2+p+1$ for any prime $p\in\pi(G)$, then $G$ is Ore dispersive; (3) the derived length of $G$ is at most 4.
@article{FPM_2009_15_2_a4,
author = {V. S. Monakhov and A. Trofimuk},
title = {Finite solvable groups in which the {Sylow} $p$-subgroups are either bicyclic or of order~$p^3$},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {121--131},
publisher = {mathdoc},
volume = {15},
number = {2},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2009_15_2_a4/}
}
TY - JOUR AU - V. S. Monakhov AU - A. Trofimuk TI - Finite solvable groups in which the Sylow $p$-subgroups are either bicyclic or of order~$p^3$ JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2009 SP - 121 EP - 131 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2009_15_2_a4/ LA - ru ID - FPM_2009_15_2_a4 ER -
%0 Journal Article %A V. S. Monakhov %A A. Trofimuk %T Finite solvable groups in which the Sylow $p$-subgroups are either bicyclic or of order~$p^3$ %J Fundamentalʹnaâ i prikladnaâ matematika %D 2009 %P 121-131 %V 15 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2009_15_2_a4/ %G ru %F FPM_2009_15_2_a4
V. S. Monakhov; A. Trofimuk. Finite solvable groups in which the Sylow $p$-subgroups are either bicyclic or of order~$p^3$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 2, pp. 121-131. http://geodesic.mathdoc.fr/item/FPM_2009_15_2_a4/