Finite solvable groups in which the Sylow $p$-subgroups are either bicyclic or of order~$p^3$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 2, pp. 121-131.

Voir la notice de l'article provenant de la source Math-Net.Ru

All groups considered in this paper will be finite. Our main result here is the following theorem. Let $G$ be a solvable group in which the Sylow $p$-subgroups are either bicyclic or of order $p^3$ for any $p\in\pi(G)$. Then the derived length of $G$ is at most 6. In particular, if $G$ is an $\mathrm A_4$- free group, then the following statements are true: (1) $G$ is a dispersive group; (2) if no prime $q\in\pi(G)$ divides $p^2+p+1$ for any prime $p\in\pi(G)$, then $G$ is Ore dispersive; (3) the derived length of $G$ is at most 4.
@article{FPM_2009_15_2_a4,
     author = {V. S. Monakhov and A. Trofimuk},
     title = {Finite solvable groups in which the {Sylow} $p$-subgroups are either bicyclic or of order~$p^3$},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {121--131},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2009_15_2_a4/}
}
TY  - JOUR
AU  - V. S. Monakhov
AU  - A. Trofimuk
TI  - Finite solvable groups in which the Sylow $p$-subgroups are either bicyclic or of order~$p^3$
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2009
SP  - 121
EP  - 131
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2009_15_2_a4/
LA  - ru
ID  - FPM_2009_15_2_a4
ER  - 
%0 Journal Article
%A V. S. Monakhov
%A A. Trofimuk
%T Finite solvable groups in which the Sylow $p$-subgroups are either bicyclic or of order~$p^3$
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2009
%P 121-131
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2009_15_2_a4/
%G ru
%F FPM_2009_15_2_a4
V. S. Monakhov; A. Trofimuk. Finite solvable groups in which the Sylow $p$-subgroups are either bicyclic or of order~$p^3$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 2, pp. 121-131. http://geodesic.mathdoc.fr/item/FPM_2009_15_2_a4/

[1] Konovalov A. B., Sistema kompyuternoi algebry GAP 4.4, 2008

[2] Monakhov V. S., “Podgruppy Shmidta, ikh suschestvovanie i nekotorye prilozheniya”, Algebra i teoriya chisel, Pratsi Ukr. mat. kongr., In-t matematiki NAN Ukraïni, Kiiv, 2001, 81–90

[3] Monakhov V. S., “Ob indeksakh maksimalnykh podgrupp konechnykh razreshimykh grupp”, Algebra i logika, 43:4 (2004), 411–424 | MR | Zbl

[4] Monakhov V. S., Vvedenie v teoriyu konechnykh grupp i ikh klassov, Vysheishaya shkola, Minsk, 2006

[5] Monakhov V. S., Gribovskaya E. E., “O maksimalnykh i silovskikh podgruppakh konechnykh razreshimykh grupp”, Mat. zametki, 70:4 (2001), 603–612 | DOI | MR | Zbl

[6] Suprunenko D. A., Gruppy matrits, Nauka, M., 1972 | MR | Zbl

[7] Shemetkov L. A., Formatsii konechnykh grupp, Nauka, M., 1978 | MR | Zbl

[8] Bloom D., The Subgroups of $\mathrm{PSL}(3,q)$ for Odd $q$, Brooklyn, New York, 1967 | MR

[9] Gorenstein D., Finite Groups, Harper and Row, New York, 1968 | MR | Zbl

[10] Huppert B., Endliche Gruppen, I, Berlin, 1967 | MR | Zbl

[11] Kurzweil H., Stellmacher B., The Theory of Finite Groups, Springer, New York, 2004 | MR | Zbl

[12] Palfy P. P., “Bounds for linear groups of odd order”, Rend. Circ. Mat. Palermo Ser. (2) Suppl., 1990, no. 23, 253–263 | MR | Zbl