Varieties birationally isomorphic to affine $G$-varieties
Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 1, pp. 125-133.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let a linear algebraic group $G$ act on an algebraic variety $X$. Classification of all these actions, in particular birational classification, is of great interest. A complete classification related to Galois cohomologies of the group $G$ was established. Another important question is reducibility, in some sense, of this action to an action of $G$ on an affine variety. It has been shown that if the stabilizer of a typical point under the action of a reductive group $G$ on a variety $X$ is reductive, then $X$ is birationally isomorphic to an affine variety $\overline X$ with stable action of $G$. In this paper, I show that if a typical orbit of the action of $G$ is quasiaffine, then the variety $X$ is birationally isomorphic to an affine variety $\overline X$.
@article{FPM_2009_15_1_a8,
     author = {A. V. Petukhov},
     title = {Varieties birationally isomorphic to affine $G$-varieties},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {125--133},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2009_15_1_a8/}
}
TY  - JOUR
AU  - A. V. Petukhov
TI  - Varieties birationally isomorphic to affine $G$-varieties
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2009
SP  - 125
EP  - 133
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2009_15_1_a8/
LA  - ru
ID  - FPM_2009_15_1_a8
ER  - 
%0 Journal Article
%A A. V. Petukhov
%T Varieties birationally isomorphic to affine $G$-varieties
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2009
%P 125-133
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2009_15_1_a8/
%G ru
%F FPM_2009_15_1_a8
A. V. Petukhov. Varieties birationally isomorphic to affine $G$-varieties. Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 1, pp. 125-133. http://geodesic.mathdoc.fr/item/FPM_2009_15_1_a8/

[1] Vinberg E. B., Popov V. L., “Teoriya invariantov”, Itogi nauki i tekhn. Ser. Sovr. probl. matematiki, 55, VINITI, M., 1989, 137–309 | MR | Zbl

[2] Popov V., “Sections in invariant theory”, The Sophus Lie Memorial Conference, Proceedings, Oslo, 1992

[3] Reichstein Z., Vonessen N., “Stable affine models for algebraic group actions”, J. Lie Theory, 14:2 (2004), 563–568 | MR | Zbl

[4] Richardson R. W. (Jr.), “Deformations of Lie subgroups and the variation of isotropy subgroups”, Acta Math., 129 (1972), 35–73 | DOI | MR | Zbl