On invariants of modular free Lie algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 1, pp. 117-124

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that $L(X)$ is a free Lie algebra of finite rank over a field of positive characteristic. Let $G$ be a nontrivial finite group of homogeneous automorphisms of $L(X)$. It is known that the subalgebra of invariants $H=L^G$ is infinitely generated. Our goal is to describe how big its free generating set is. Let $Y=\bigcup_{n=1}^\infty Y_n$ be a homogeneous free generating set of $H$, where elements of $Y_n$ are of degree $n$ with respect to $X$. We describe the growth of the generating function of $Y$ and prove that $|Y_n|$ grow exponentially.
@article{FPM_2009_15_1_a7,
     author = {V. M. Petrogradsky and A. A. Smirnov},
     title = {On invariants of modular free {Lie} algebras},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {117--124},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2009_15_1_a7/}
}
TY  - JOUR
AU  - V. M. Petrogradsky
AU  - A. A. Smirnov
TI  - On invariants of modular free Lie algebras
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2009
SP  - 117
EP  - 124
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2009_15_1_a7/
LA  - ru
ID  - FPM_2009_15_1_a7
ER  - 
%0 Journal Article
%A V. M. Petrogradsky
%A A. A. Smirnov
%T On invariants of modular free Lie algebras
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2009
%P 117-124
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2009_15_1_a7/
%G ru
%F FPM_2009_15_1_a7
V. M. Petrogradsky; A. A. Smirnov. On invariants of modular free Lie algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 1, pp. 117-124. http://geodesic.mathdoc.fr/item/FPM_2009_15_1_a7/