On invariants of modular free Lie algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 1, pp. 117-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that $L(X)$ is a free Lie algebra of finite rank over a field of positive characteristic. Let $G$ be a nontrivial finite group of homogeneous automorphisms of $L(X)$. It is known that the subalgebra of invariants $H=L^G$ is infinitely generated. Our goal is to describe how big its free generating set is. Let $Y=\bigcup_{n=1}^\infty Y_n$ be a homogeneous free generating set of $H$, where elements of $Y_n$ are of degree $n$ with respect to $X$. We describe the growth of the generating function of $Y$ and prove that $|Y_n|$ grow exponentially.
@article{FPM_2009_15_1_a7,
     author = {V. M. Petrogradsky and A. A. Smirnov},
     title = {On invariants of modular free {Lie} algebras},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {117--124},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2009_15_1_a7/}
}
TY  - JOUR
AU  - V. M. Petrogradsky
AU  - A. A. Smirnov
TI  - On invariants of modular free Lie algebras
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2009
SP  - 117
EP  - 124
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2009_15_1_a7/
LA  - ru
ID  - FPM_2009_15_1_a7
ER  - 
%0 Journal Article
%A V. M. Petrogradsky
%A A. A. Smirnov
%T On invariants of modular free Lie algebras
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2009
%P 117-124
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2009_15_1_a7/
%G ru
%F FPM_2009_15_1_a7
V. M. Petrogradsky; A. A. Smirnov. On invariants of modular free Lie algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 1, pp. 117-124. http://geodesic.mathdoc.fr/item/FPM_2009_15_1_a7/

[1] Bakhturin Yu. A., Tozhdestva v algebrakh Li, Nauka, M., 1985 | MR | Zbl

[2] Markushevich A. I., Markushevich L. A., Vvedenie v teoriyu analiticheskikh funktsii., Prosveschenie, M., 1977 | MR | Zbl

[3] Mikhalëv A. A., “O nepodvizhnykh tochkakh svobodnoi tsvetnoi superalgebry Li otnositelno deistviya konechnoi gruppy lineinykh avtomorfizmov”, Uspekhi mat. nauk, 47:4 (1992), 205–206 | MR | Zbl

[4] Petrogradskii V. M., “Ob invariantakh deistviya konechnoi gruppy na svobodnoi algebre Li”, Sib. mat. zhurn., 41:4 (2000), 917–925 | MR | Zbl

[5] Petrogradskii V. M., “Kharaktery i invarianty svobodnykh superalgebr Li”, Algebra i analiz, 13:1 (2001), 158–181 | MR | Zbl

[6] Bryant R. M., “On the fixed points of a finite group acting on a free Lie algebra”, J. London Math. Soc. (2), 43:2 (1991), 215–224 | DOI | MR | Zbl

[7] Bryant R. M., “Free Lie algebras and formal power series”, J. Algebra, 253:1 (2002), 167–188 | DOI | MR | Zbl

[8] Bryant R. M., Papistas A. I., “On the fixed points of a finite group acting on a relatively free Lie algebra”, Glasgow Math. J., 42 (2000), 167–181 | DOI | MR | Zbl

[9] Drensky V., “Fixed algebras of residually nilpotent Lie algebras”, Proc. Amer. Math. Soc., 120:4 (1994), 1021–1028 | DOI | MR | Zbl

[10] Petrogradsky V. M., “Growth of finitely generated polynilpotent Lie algebras and groups, generalized partitions, and functions analytic in the unit circle”, Internat. J. Algebra Comput., 9:2 (1999), 179–212 | DOI | MR | Zbl

[11] Petrogradsky V. M., “On Witt's formula and invariants for free Lie superalgebras”, Formal Power Series and Algebraic Combinatorics, Proc. of the 12th Int. Conf., FPSAC' 00 (Moscow, Russia, June 26–30, 2000), ed. D. Krob, Springer, Berlin, 2000, 543–551 | DOI | MR | Zbl

[12] Reutenauer C., Free Lie Algebras, Clarendon Press, Oxford, 1993 | MR | Zbl