Special classes of $l$-rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 1, pp. 157-173.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a special class of lattice-ordered rings and a special radical. We prove that a special radical of an $l$-ring is equal to the intersection of the right $l$-prime $l$-ideals for each of which the following condition holds: the quotient $l$-ring by the maximal $l$-ideal contained in a given right $l$-ideal belongs to the special class. The prime radical of an $l$-ring is equal to the intersection of the right $l$-semiprime $l$-ideals. We introduce the notion of a completely $l$-prime $l$-ideal. We prove that $N_3(R)$ is equal to the intersection of the completely $l$-prime, right $l$-ideals of an $l$-ring $R$, where $N_3(R)$ is the special radical of the $l$-ring $R$ defined by the class of $l$-rings without positive divisors of zero.
@article{FPM_2009_15_1_a11,
     author = {N. E. Shavgulidze},
     title = {Special classes of $l$-rings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {157--173},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2009_15_1_a11/}
}
TY  - JOUR
AU  - N. E. Shavgulidze
TI  - Special classes of $l$-rings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2009
SP  - 157
EP  - 173
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2009_15_1_a11/
LA  - ru
ID  - FPM_2009_15_1_a11
ER  - 
%0 Journal Article
%A N. E. Shavgulidze
%T Special classes of $l$-rings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2009
%P 157-173
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2009_15_1_a11/
%G ru
%F FPM_2009_15_1_a11
N. E. Shavgulidze. Special classes of $l$-rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 1, pp. 157-173. http://geodesic.mathdoc.fr/item/FPM_2009_15_1_a11/

[1] Andrunakievich V. A., “Radikaly assotsiativnykh kolets. I”, Mat. sb., 44(86):2 (1958), 179–212 | MR | Zbl

[2] Andrunakievich V. A., Ryabukhin Yu. M., Radikaly algebr i strukturnaya teoriya, Nauka, M., 1979 | MR

[3] Birkgof G., Teoriya reshëtok, Mir, M., 1984 | MR

[4] Mikhalëv A. V., Shatalova M. A., Pervichnyi radikal reshëtochno uporyadochennykh kolets, Sb. rabot po algebre, Izd-vo Mosk. un-ta, M., 1989, 178–184

[5] Fuks L., Uporyadochennye algebraicheskie sistemy, Nauka, M., 1965 | Zbl

[6] Shavgulidze N. E., “Radikaly $l$-kolets i odnostoronnie $l$-idealy”, Fundament. i prikl. mat., 14:8 (2008), 169–181 | MR

[7] Shavgulidze N. E., “Spetsialnye klassy $l$-kolets i lemma Andersona–Divinskogo–Sulinskogo”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2009 (to appear)

[8] Shatalova M. A., “$l_A$- i $l_I$-koltsa”, Sib. mat. zhurn., 7:6 (1966), 1383–1389

[9] Shatalova M. A., “K teorii radikalov v strukturno uporyadochennykh koltsakh”, Mat. zametki, 4:6 (1968), 639–648 | MR | Zbl

[10] Anderson T., Divinsky N., Sulinski A., “Hereditary radicals in associative and alternative rings”, Can. J. Math., 17 (1965), 594–603 | DOI | MR | Zbl