The normalizers of free subgroups in free Burnside groups of odd period $n\ge1003$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 1, pp. 3-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $B(m,n)$ be a free periodic group of arbitrary rank $m$ with period $n$. In this paper, we prove that for all odd numbers $n\ge1003$ the normalizer of any nontrivial subgroup $N$ of the group $B(m,n)$ coincides with $N$ if the subgroup $N$ is free in the variety of all $n$-periodic groups. From this, there follows a positive answer for all prime numbers $n>997$ to the following problem set by S. I. Adian in the Kourovka Notebook: is it true that none of the proper normal subgroups of the group $B(m,n)$ of prime period $n>665$ is a free periodic group? The obtained result also strengthens a similar result of A. Yu. Ol'shanskii by reducing the boundary of exponent $n$ from $n>10^{78}$ to $n\ge1003$. For primes $665$, the mentioned question is still open.
@article{FPM_2009_15_1_a0,
     author = {V. S. Atabekyan},
     title = {The normalizers of free subgroups in free {Burnside} groups of odd period $n\ge1003$},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {3--21},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2009_15_1_a0/}
}
TY  - JOUR
AU  - V. S. Atabekyan
TI  - The normalizers of free subgroups in free Burnside groups of odd period $n\ge1003$
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2009
SP  - 3
EP  - 21
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2009_15_1_a0/
LA  - ru
ID  - FPM_2009_15_1_a0
ER  - 
%0 Journal Article
%A V. S. Atabekyan
%T The normalizers of free subgroups in free Burnside groups of odd period $n\ge1003$
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2009
%P 3-21
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2009_15_1_a0/
%G ru
%F FPM_2009_15_1_a0
V. S. Atabekyan. The normalizers of free subgroups in free Burnside groups of odd period $n\ge1003$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 1, pp. 3-21. http://geodesic.mathdoc.fr/item/FPM_2009_15_1_a0/

[1] Adyan S. I., “O podgruppakh svobodnykh periodicheskikh grupp nechëtnogo pokazatelya”, Tr. MIAN SSSR, 112, 1971, 64–72 | Zbl

[2] Adyan S. I., Problema Bernsaida i tozhdestva v gruppakh, Nauka, M., 1975 | MR | Zbl

[3] Adyan S. I., “Aksiomaticheskii metod postroeniya grupp s zadannymi svoistvami”, Uspekhi mat. nauk, 32:1(193) (1977), 3–15 | MR | Zbl

[4] Adyan S. I., “O prostote periodicheskikh proizvedenii grupp”, DAN SSSR, 241:4 (1978), 745–748 | MR | Zbl

[5] Adyan S. I., “Normalnye podgruppy svobodnykh periodicheskikh grupp”, Izv. AN SSSR. Ser. mat., 45:5 (1981), 931–947 | MR | Zbl

[6] Adyan S. I., “Sluchainye bluzhdaniya na svobodnykh periodicheskikh gruppakh”, Izv. AN SSSR. Ser. mat., 46:6 (1982), 1139–1149 | MR | Zbl

[7] Adyan S. I., “Problema Bernsaida o periodicheskikh gruppakh i smezhnye voprosy”, Sovr. probl. mat., 1, 2003, 5–28 | DOI | MR

[8] Adyan S. I., Lysënok I. G., “O gruppakh, vse sobstvennye podgruppy kotorykh konechnye tsiklicheskie”, Izv. AN SSSR. Ser. mat., 55:5 (1991), 933–990 | MR | Zbl

[9] Atabekyan V. S., Ob approksimatsii i podgruppakh svobodnykh periodicheskikh grupp, Dep. v VINITI, No 5380-V86

[10] Atabekyan V. S., “O prostykh i svobodnykh periodicheskikh gruppakh”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 1987, no. 6, 76–78 | MR | Zbl

[11] Atabekyan V. S., “O periodicheskikh gruppakh nechëtnogo perioda $n\geq1003$”, Mat. zametki, 82:4 (2007), 495–500 | DOI | MR | Zbl

[12] Atabekyan V. S., “O podgruppakh svobodnykh periodicheskikh grupp nechëtnogo perioda $n\ge1003$”, Izv. RAN. Ser. mat., 73:5 (2009), 3–36 | DOI | MR | Zbl

[13] Atabekyan V. S., “Ravnomernaya neamenabelnost podgrupp svobodnykh bernsaidovykh grupp nechëtnogo perioda”, Mat. zametki, 85:4 (2009), 516–523 | DOI | MR | Zbl

[14] Ivanov S. V., “O podgruppakh svobodnykh bernsaidovykh grupp nechëtnogo sostavnogo perioda”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 1989, no. 2, 7–11 | MR | Zbl

[15] Kourovskaya tetrad: Nereshënnye voprosy teorii grupp, Novosibirsk, 1980

[16] Novikov P. S., Adyan S. I., “O beskonechnykh periodicheskikh gruppakh. I”, Izv. AN SSSR. Ser. mat., 32:1 (1968), 212–244 | MR | Zbl

[17] Novikov P. S., Adyan S. I., “O kommutativnykh podgruppakh i probleme sopryazhënnosti v svobodnykh periodicheskikh gruppakh nechëtnogo poryadka”, Izv. AN SSSR. Ser. mat., 32:5 (1968), 1176–1190 | MR | Zbl

[18] Novikov P. S., Adyan S. I., “Opredelyayuschie sootnosheniya i problema tozhdestva dlya svobodnykh periodicheskikh grupp nechëtnogo poryadka”, Izv. AN SSSR. Ser. mat., 32:4 (1968), 971–979 | MR | Zbl

[19] Olshanskii A. Yu., Geometriya opredelyayuschikh sootnoshenii v gruppakh, Nauka, M., 1989 | MR

[20] Shirvanyan V. L., “Vlozhenie gruppy $B(\infty,n)$ v gruppu $B(2,n)$”, Izv. AN SSSR. Ser. mat., 40:1 (1976), 190–208 | MR | Zbl

[21] Cherepanov E. A., “Normal automorphisms of free Burnside groups of large odd exponents”, Internat. J. Algebra Comput., 16:5 (2006), 839–847 | DOI | MR | Zbl

[22] Lubotzky A., “Normal automorphisms of free groups”, J. Algebra, 63:2 (1980), 494–498 | DOI | MR | Zbl

[23] Lue A. S.-T., “Normal automorphisms of free groups”, J. Algebra, 64:1 (1980), 52–53 | DOI | MR | Zbl

[24] Ol'shanskii A. Yu., “Self-normalization of free subgroups in the free Burnside groups”, Groups, Rings, Lie and Hopf Algebras, Math. Appl., 555, Kluwer Academic, Dordrecht, 2003, 179–187 | MR | Zbl

[25] Osin D. V., “Uniform non-amenability of free Burnside groups”, Arch. Math. (Basel), 88:5 (2007), 403–412 | DOI | MR | Zbl