The normalizers of free subgroups in free Burnside groups of odd period $n\ge1003$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 1, pp. 3-21

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $B(m,n)$ be a free periodic group of arbitrary rank $m$ with period $n$. In this paper, we prove that for all odd numbers $n\ge1003$ the normalizer of any nontrivial subgroup $N$ of the group $B(m,n)$ coincides with $N$ if the subgroup $N$ is free in the variety of all $n$-periodic groups. From this, there follows a positive answer for all prime numbers $n>997$ to the following problem set by S. I. Adian in the Kourovka Notebook: is it true that none of the proper normal subgroups of the group $B(m,n)$ of prime period $n>665$ is a free periodic group? The obtained result also strengthens a similar result of A. Yu. Ol'shanskii by reducing the boundary of exponent $n$ from $n>10^{78}$ to $n\ge1003$. For primes $665$, the mentioned question is still open.
@article{FPM_2009_15_1_a0,
     author = {V. S. Atabekyan},
     title = {The normalizers of free subgroups in free {Burnside} groups of odd period $n\ge1003$},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {3--21},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2009_15_1_a0/}
}
TY  - JOUR
AU  - V. S. Atabekyan
TI  - The normalizers of free subgroups in free Burnside groups of odd period $n\ge1003$
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2009
SP  - 3
EP  - 21
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2009_15_1_a0/
LA  - ru
ID  - FPM_2009_15_1_a0
ER  - 
%0 Journal Article
%A V. S. Atabekyan
%T The normalizers of free subgroups in free Burnside groups of odd period $n\ge1003$
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2009
%P 3-21
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2009_15_1_a0/
%G ru
%F FPM_2009_15_1_a0
V. S. Atabekyan. The normalizers of free subgroups in free Burnside groups of odd period $n\ge1003$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 1, pp. 3-21. http://geodesic.mathdoc.fr/item/FPM_2009_15_1_a0/