The normalizers of free subgroups in free Burnside groups of odd period $n\ge1003$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 1, pp. 3-21
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $B(m,n)$ be a free periodic group of arbitrary rank $m$ with period $n$. In this paper, we prove that for all odd numbers $n\ge1003$ the normalizer of any nontrivial subgroup $N$ of the group $B(m,n)$ coincides with $N$ if the subgroup $N$ is free in the variety of all $n$-periodic groups. From this, there follows a positive answer for all prime numbers $n>997$ to the following problem set by S. I. Adian in the Kourovka Notebook: is it true that none of the proper normal subgroups of the group $B(m,n)$ of prime period $n>665$ is a free periodic group? The obtained result also strengthens a similar result of A. Yu. Ol'shanskii by reducing the boundary of exponent $n$ from $n>10^{78}$ to $n\ge1003$. For primes $665$, the mentioned question is still open.
@article{FPM_2009_15_1_a0,
author = {V. S. Atabekyan},
title = {The normalizers of free subgroups in free {Burnside} groups of odd period $n\ge1003$},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {3--21},
publisher = {mathdoc},
volume = {15},
number = {1},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2009_15_1_a0/}
}
TY - JOUR AU - V. S. Atabekyan TI - The normalizers of free subgroups in free Burnside groups of odd period $n\ge1003$ JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2009 SP - 3 EP - 21 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2009_15_1_a0/ LA - ru ID - FPM_2009_15_1_a0 ER -
V. S. Atabekyan. The normalizers of free subgroups in free Burnside groups of odd period $n\ge1003$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 1, pp. 3-21. http://geodesic.mathdoc.fr/item/FPM_2009_15_1_a0/