On coherent families of uniformizing elements in some towers of Abelian extensions of local number fields
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 8, pp. 151-157.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a local number field $K$ with the ring of integers $\mathcal O_K$, the residue field $\mathbb F_q$, and uniformizing $\pi$, we consider the Lubin–Tate tower $K_\pi=\bigcup_{n\geq0}K_n$, where $K_n=K(\pi_n)$, $f(\pi_0)=0$, and $f(\pi_{n+1})=\pi_n$. Here $f(X)$ defines the endomorphism $[\pi]$ of the Lubin–Tate group. If $q\neq2$, then for any formal power series $g(X)\in\mathcal O_K[[X]]$ the following equality holds: $\sum_{n=0}^\infty\mathrm{Sp}_{K_n/K}g(\pi_n)=-g(0)$. One has a similar equality in the case $q=2$.
@article{FPM_2008_14_8_a8,
     author = {L. V. Kuz'min},
     title = {On coherent families of uniformizing elements in some towers of {Abelian} extensions of local number fields},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {151--157},
     publisher = {mathdoc},
     volume = {14},
     number = {8},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_8_a8/}
}
TY  - JOUR
AU  - L. V. Kuz'min
TI  - On coherent families of uniformizing elements in some towers of Abelian extensions of local number fields
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2008
SP  - 151
EP  - 157
VL  - 14
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2008_14_8_a8/
LA  - ru
ID  - FPM_2008_14_8_a8
ER  - 
%0 Journal Article
%A L. V. Kuz'min
%T On coherent families of uniformizing elements in some towers of Abelian extensions of local number fields
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2008
%P 151-157
%V 14
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2008_14_8_a8/
%G ru
%F FPM_2008_14_8_a8
L. V. Kuz'min. On coherent families of uniformizing elements in some towers of Abelian extensions of local number fields. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 8, pp. 151-157. http://geodesic.mathdoc.fr/item/FPM_2008_14_8_a8/

[1] Kassels Dzh., Frëlikh A., Algebraicheskaya teoriya chisel, M., 1969

[2] Kuzmin L. V., “Novoe dokazatelstvo odnoi teoremy dvoistvennosti o $l$-adicheskikh logarifmakh lokalnykh edinits”, Itogi nauki i tekhn. Ser. Sovr. mat. i eë pril., 45, VINITI, M., 1997, 72–81

[3] Kuzmin L. V., “Nekotorye zamechaniya o $l$-adicheskom regulyatore. III”, Izv. RAN. Ser. mat., 63:6 (1999), 29–82 | MR | Zbl

[4] Kuzmin L. V., “Ob odnom svoistve $l$-adicheskikh logarifmov edinits lokalnykh neabelevykh polei”, Izv. RAN. Ser. mat., 70:5 (2006), 97–122 | MR | Zbl