On coherent families of uniformizing elements in some towers of Abelian extensions of local number fields
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 8, pp. 151-157
For a local number field $K$ with the ring of integers $\mathcal O_K$, the residue field $\mathbb F_q$, and uniformizing $\pi$, we consider the Lubin–Tate tower $K_\pi=\bigcup_{n\geq0}K_n$, where $K_n=K(\pi_n)$, $f(\pi_0)=0$, and $f(\pi_{n+1})=\pi_n$. Here $f(X)$ defines the endomorphism $[\pi]$ of the Lubin–Tate group. If $q\neq2$, then for any formal power series $g(X)\in\mathcal O_K[[X]]$ the following equality holds: $\sum_{n=0}^\infty\mathrm{Sp}_{K_n/K}g(\pi_n)=-g(0)$. One has a similar equality in the case $q=2$.
@article{FPM_2008_14_8_a8,
author = {L. V. Kuz'min},
title = {On coherent families of uniformizing elements in some towers of {Abelian} extensions of local number fields},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {151--157},
year = {2008},
volume = {14},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_8_a8/}
}
TY - JOUR AU - L. V. Kuz'min TI - On coherent families of uniformizing elements in some towers of Abelian extensions of local number fields JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2008 SP - 151 EP - 157 VL - 14 IS - 8 UR - http://geodesic.mathdoc.fr/item/FPM_2008_14_8_a8/ LA - ru ID - FPM_2008_14_8_a8 ER -
L. V. Kuz'min. On coherent families of uniformizing elements in some towers of Abelian extensions of local number fields. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 8, pp. 151-157. http://geodesic.mathdoc.fr/item/FPM_2008_14_8_a8/
[1] Kassels Dzh., Frëlikh A., Algebraicheskaya teoriya chisel, M., 1969
[2] Kuzmin L. V., “Novoe dokazatelstvo odnoi teoremy dvoistvennosti o $l$-adicheskikh logarifmakh lokalnykh edinits”, Itogi nauki i tekhn. Ser. Sovr. mat. i eë pril., 45, VINITI, M., 1997, 72–81
[3] Kuzmin L. V., “Nekotorye zamechaniya o $l$-adicheskom regulyatore. III”, Izv. RAN. Ser. mat., 63:6 (1999), 29–82 | MR | Zbl
[4] Kuzmin L. V., “Ob odnom svoistve $l$-adicheskikh logarifmov edinits lokalnykh neabelevykh polei”, Izv. RAN. Ser. mat., 70:5 (2006), 97–122 | MR | Zbl