On coherent families of uniformizing elements in some towers of Abelian extensions of local number fields
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 8, pp. 151-157
Voir la notice de l'article provenant de la source Math-Net.Ru
For a local number field $K$ with the ring of integers $\mathcal O_K$, the residue field $\mathbb F_q$, and uniformizing $\pi$, we consider the Lubin–Tate tower $K_\pi=\bigcup_{n\geq0}K_n$, where $K_n=K(\pi_n)$, $f(\pi_0)=0$, and $f(\pi_{n+1})=\pi_n$. Here $f(X)$ defines the endomorphism $[\pi]$ of the Lubin–Tate group. If $q\neq2$, then for any formal power series $g(X)\in\mathcal O_K[[X]]$ the following equality holds: $\sum_{n=0}^\infty\mathrm{Sp}_{K_n/K}g(\pi_n)=-g(0)$. One has a similar equality in the case $q=2$.
@article{FPM_2008_14_8_a8,
author = {L. V. Kuz'min},
title = {On coherent families of uniformizing elements in some towers of {Abelian} extensions of local number fields},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {151--157},
publisher = {mathdoc},
volume = {14},
number = {8},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_8_a8/}
}
TY - JOUR AU - L. V. Kuz'min TI - On coherent families of uniformizing elements in some towers of Abelian extensions of local number fields JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2008 SP - 151 EP - 157 VL - 14 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2008_14_8_a8/ LA - ru ID - FPM_2008_14_8_a8 ER -
%0 Journal Article %A L. V. Kuz'min %T On coherent families of uniformizing elements in some towers of Abelian extensions of local number fields %J Fundamentalʹnaâ i prikladnaâ matematika %D 2008 %P 151-157 %V 14 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2008_14_8_a8/ %G ru %F FPM_2008_14_8_a8
L. V. Kuz'min. On coherent families of uniformizing elements in some towers of Abelian extensions of local number fields. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 8, pp. 151-157. http://geodesic.mathdoc.fr/item/FPM_2008_14_8_a8/