Complete semigroups of binary relations defined by $X$-semilattices of unions
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 8, pp. 73-99
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is devoted to some results from the book “Complete Semigroups of Binary Relations”, which is not published yet. Conditions of divisibility of binary relations, idempotents, regular elements, one-side units, and one-side zeros are described. Finite $X$-semilattices and unions are characterized. Methods of finding formulas for counting the number of idempotents and regular elements are given.
@article{FPM_2008_14_8_a3,
     author = {Ya. Diasamidze and Sh. Makharadze},
     title = {Complete semigroups of binary relations defined by $X$-semilattices of unions},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {73--99},
     year = {2008},
     volume = {14},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_8_a3/}
}
TY  - JOUR
AU  - Ya. Diasamidze
AU  - Sh. Makharadze
TI  - Complete semigroups of binary relations defined by $X$-semilattices of unions
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2008
SP  - 73
EP  - 99
VL  - 14
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/FPM_2008_14_8_a3/
LA  - ru
ID  - FPM_2008_14_8_a3
ER  - 
%0 Journal Article
%A Ya. Diasamidze
%A Sh. Makharadze
%T Complete semigroups of binary relations defined by $X$-semilattices of unions
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2008
%P 73-99
%V 14
%N 8
%U http://geodesic.mathdoc.fr/item/FPM_2008_14_8_a3/
%G ru
%F FPM_2008_14_8_a3
Ya. Diasamidze; Sh. Makharadze. Complete semigroups of binary relations defined by $X$-semilattices of unions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 8, pp. 73-99. http://geodesic.mathdoc.fr/item/FPM_2008_14_8_a3/

[1] Diasamidze Ya. I., Polnye polugruppy binarnykh otnoshenii, Adzhara, Batumi, 2000

[2] Diasamidze Ya., “Right units in semigroups of binary relations”, Proc. A. Razmadze Math. Inst., 128 (2002), 17–36 | MR | Zbl

[3] Diasamidze Ya., “To the theory of semigroups of binary relations”, Proc. A. Razmadze Math. Inst., 128 (2002), 1–15 | MR | Zbl

[4] Diasamidze Ya., “Complete semigroups of binary relations”, J. Math. Sci., 117:4 (2003), 4271–4319 | DOI | MR | Zbl

[5] Diasamidze Ya., Diasamidze I., “Semigroups $\mathrm B_X(D)$ defined by finite $X$-chains”, Proc. A. Razmadze Math. Inst., 131 (2003), 107–108 | MR | Zbl

[6] Diasamidze Ya., Makharadze Sh., “Complete semigroups of binary relations defined by elementary and nodal $X$-semilattices of union”, J. Math. Sci., 111:1 (2002), 3171–3226 | DOI | MR | Zbl

[7] Diasamidze Ya., Makharadze Sh., “Maximal subgroups of complete semigroups of binary relations”, Proc. A. Razmadze Math. Inst., 131 (2003), 21–38 | MR | Zbl

[8] Diasamidze Ya., Makharadze Sh., Fartenadze G., Givradze O., “On finite semilattices of unions”, J. Math. Sci., 141:4 (2007), 1134–1181 | DOI | MR | Zbl

[9] Diasamidze Ya., Sirabidze T., “Complete semigroups of binary relations, defined by 3-elemented $X$-chains”, J. Math. Sci., 117:4 (2003), 4320–4350 | DOI | MR | Zbl

[10] Makharadze Sh. I., Diasamidze I. Ya., “On the classes of complete semigroups of binary relations”, J. Math. Sci., 117:4 (2003), 4393–4424 | DOI | MR | Zbl