Complete semigroups of binary relations defined by $X$-semilattices of unions
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 8, pp. 73-99.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to some results from the book “Complete Semigroups of Binary Relations”, which is not published yet. Conditions of divisibility of binary relations, idempotents, regular elements, one-side units, and one-side zeros are described. Finite $X$-semilattices and unions are characterized. Methods of finding formulas for counting the number of idempotents and regular elements are given.
@article{FPM_2008_14_8_a3,
     author = {Ya. Diasamidze and Sh. Makharadze},
     title = {Complete semigroups of binary relations defined by $X$-semilattices of unions},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {73--99},
     publisher = {mathdoc},
     volume = {14},
     number = {8},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_8_a3/}
}
TY  - JOUR
AU  - Ya. Diasamidze
AU  - Sh. Makharadze
TI  - Complete semigroups of binary relations defined by $X$-semilattices of unions
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2008
SP  - 73
EP  - 99
VL  - 14
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2008_14_8_a3/
LA  - ru
ID  - FPM_2008_14_8_a3
ER  - 
%0 Journal Article
%A Ya. Diasamidze
%A Sh. Makharadze
%T Complete semigroups of binary relations defined by $X$-semilattices of unions
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2008
%P 73-99
%V 14
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2008_14_8_a3/
%G ru
%F FPM_2008_14_8_a3
Ya. Diasamidze; Sh. Makharadze. Complete semigroups of binary relations defined by $X$-semilattices of unions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 8, pp. 73-99. http://geodesic.mathdoc.fr/item/FPM_2008_14_8_a3/

[1] Diasamidze Ya. I., Polnye polugruppy binarnykh otnoshenii, Adzhara, Batumi, 2000

[2] Diasamidze Ya., “Right units in semigroups of binary relations”, Proc. A. Razmadze Math. Inst., 128 (2002), 17–36 | MR | Zbl

[3] Diasamidze Ya., “To the theory of semigroups of binary relations”, Proc. A. Razmadze Math. Inst., 128 (2002), 1–15 | MR | Zbl

[4] Diasamidze Ya., “Complete semigroups of binary relations”, J. Math. Sci., 117:4 (2003), 4271–4319 | DOI | MR | Zbl

[5] Diasamidze Ya., Diasamidze I., “Semigroups $\mathrm B_X(D)$ defined by finite $X$-chains”, Proc. A. Razmadze Math. Inst., 131 (2003), 107–108 | MR | Zbl

[6] Diasamidze Ya., Makharadze Sh., “Complete semigroups of binary relations defined by elementary and nodal $X$-semilattices of union”, J. Math. Sci., 111:1 (2002), 3171–3226 | DOI | MR | Zbl

[7] Diasamidze Ya., Makharadze Sh., “Maximal subgroups of complete semigroups of binary relations”, Proc. A. Razmadze Math. Inst., 131 (2003), 21–38 | MR | Zbl

[8] Diasamidze Ya., Makharadze Sh., Fartenadze G., Givradze O., “On finite semilattices of unions”, J. Math. Sci., 141:4 (2007), 1134–1181 | DOI | MR | Zbl

[9] Diasamidze Ya., Sirabidze T., “Complete semigroups of binary relations, defined by 3-elemented $X$-chains”, J. Math. Sci., 117:4 (2003), 4320–4350 | DOI | MR | Zbl

[10] Makharadze Sh. I., Diasamidze I. Ya., “On the classes of complete semigroups of binary relations”, J. Math. Sci., 117:4 (2003), 4393–4424 | DOI | MR | Zbl