Radicals of $l$-rings and one-sided $l$-ideals
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 8, pp. 169-181.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we introduce the notion of an $l$-prime $l$-ideal and that of a right $l$-semiprime $l$-ideal. We prove that our definitions coincide with the definitions of M. A. Shatalova in the case of two-sided $l$-ideals. Our main results are the following ones. The radical of an $l$-ring can be represented as the intersection of the right $l$-ideals for each of which the following condition holds: the quotient ring by the maximal $l$-ideal contained in the given right $l$-ideal is semisimple. The hypernilpotent radical of an $l$-ring can be represented as the intersection of the right $l$-semiprime ideals satisfying the same condition.
@article{FPM_2008_14_8_a10,
     author = {N. E. Shavgulidze},
     title = {Radicals of $l$-rings and one-sided $l$-ideals},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {169--181},
     publisher = {mathdoc},
     volume = {14},
     number = {8},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_8_a10/}
}
TY  - JOUR
AU  - N. E. Shavgulidze
TI  - Radicals of $l$-rings and one-sided $l$-ideals
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2008
SP  - 169
EP  - 181
VL  - 14
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2008_14_8_a10/
LA  - ru
ID  - FPM_2008_14_8_a10
ER  - 
%0 Journal Article
%A N. E. Shavgulidze
%T Radicals of $l$-rings and one-sided $l$-ideals
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2008
%P 169-181
%V 14
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2008_14_8_a10/
%G ru
%F FPM_2008_14_8_a10
N. E. Shavgulidze. Radicals of $l$-rings and one-sided $l$-ideals. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 8, pp. 169-181. http://geodesic.mathdoc.fr/item/FPM_2008_14_8_a10/

[1] Andrunakievich V. A., Andrunakievich A. V., “Odnostoronnie idealy i radikaly kolets”, DAN SSSR, 259:1 (1981), 11–15 | MR | Zbl

[2] Andrunakievich V. A., Ryabukhin Yu. M., Radikaly algebr i strukturnaya teoriya, Nauka, M., 1979 | MR

[3] Birkgof G., Teoriya reshëtok, Mir, M., 1984 | MR

[4] Lambek I., Koltsa i moduli, Mir, M., 1971 | MR | Zbl

[5] Fuks L., Uporyadochennye algebraicheskie sistemy, Nauka, M., 1965

[6] Shatalova M. A., “$l_A$- i $l_I$-koltsa”, Sib. mat. zhurn., 7:6 (1966), 1383–1389

[7] Shatalova M. A., “K teorii radikalov v strukturno uporyadochennykh koltsakh”, Mat. zametki, 4:6 (1968), 639–648 | MR | Zbl