Radicals of $l$-rings and one-sided $l$-ideals
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 8, pp. 169-181
In this paper, we introduce the notion of an $l$-prime $l$-ideal and that of a right $l$-semiprime $l$-ideal. We prove that our definitions coincide with the definitions of M. A. Shatalova in the case of two-sided $l$-ideals. Our main results are the following ones. The radical of an $l$-ring can be represented as the intersection of the right $l$-ideals for each of which the following condition holds: the quotient ring by the maximal $l$-ideal contained in the given right $l$-ideal is semisimple. The hypernilpotent radical of an $l$-ring can be represented as the intersection of the right $l$-semiprime ideals satisfying the same condition.
@article{FPM_2008_14_8_a10,
author = {N. E. Shavgulidze},
title = {Radicals of $l$-rings and one-sided $l$-ideals},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {169--181},
year = {2008},
volume = {14},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_8_a10/}
}
N. E. Shavgulidze. Radicals of $l$-rings and one-sided $l$-ideals. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 8, pp. 169-181. http://geodesic.mathdoc.fr/item/FPM_2008_14_8_a10/
[1] Andrunakievich V. A., Andrunakievich A. V., “Odnostoronnie idealy i radikaly kolets”, DAN SSSR, 259:1 (1981), 11–15 | MR | Zbl
[2] Andrunakievich V. A., Ryabukhin Yu. M., Radikaly algebr i strukturnaya teoriya, Nauka, M., 1979 | MR
[3] Birkgof G., Teoriya reshëtok, Mir, M., 1984 | MR
[4] Lambek I., Koltsa i moduli, Mir, M., 1971 | MR | Zbl
[5] Fuks L., Uporyadochennye algebraicheskie sistemy, Nauka, M., 1965
[6] Shatalova M. A., “$l_A$- i $l_I$-koltsa”, Sib. mat. zhurn., 7:6 (1966), 1383–1389
[7] Shatalova M. A., “K teorii radikalov v strukturno uporyadochennykh koltsakh”, Mat. zametki, 4:6 (1968), 639–648 | MR | Zbl