Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2008_14_7_a9, author = {I. B. Kozhukhov and V. A. Yaroshevich}, title = {Transformation semigroups preserving a~binary relation}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {129--135}, publisher = {mathdoc}, volume = {14}, number = {7}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a9/} }
TY - JOUR AU - I. B. Kozhukhov AU - V. A. Yaroshevich TI - Transformation semigroups preserving a~binary relation JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2008 SP - 129 EP - 135 VL - 14 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a9/ LA - ru ID - FPM_2008_14_7_a9 ER -
I. B. Kozhukhov; V. A. Yaroshevich. Transformation semigroups preserving a~binary relation. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 7, pp. 129-135. http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a9/
[1] Aizenshtat A. Ya., “Regulyarnye polugruppy endomorfizmov uporyadochennykh mnozhestv”, Uchenye zapiski Leningradskogo gos. ped. in-ta im. A. I. Gertsena, 387 (1968), 3–11 | MR
[2] Gluskin L. M., “Polugruppy izotonnykh preobrazovanii”, Uspekhi mat. nauk, 16:5 (1961), 157–162 | MR | Zbl
[3] Yaroshevich V. A., “Polugruppy chastichnykh izotonnykh preobrazovanii kvaziuporyadochennykh mnozhestv”, Sib. mat. zhurn. (to appear)
[4] Adams M. E., Gould M., “Posets whose monoids of order-preserving maps are regular”, Order, 6:2 (1989), 195–201 | DOI | MR | Zbl
[5] Bötcher M., Knauer U., “Endomorphism spectra of graphs”, Discrete Math., 109 (1992), 45–57 | DOI | MR
[6] Bötcher M., Knauer U., “Postscript: ‘Endomorphism spectra of graphs’ ”, Discrete Math., 270 (2003), 329–331 | DOI | MR
[7] Kim V. I., Kozhukhov I. B., “Weakly regular semigroups of isotone transformations”, Filomat (to appear)
[8] Molchanov V. A., “Semigroups of mappings on graphs”, Semigroup Forum, 27 (1983), 155–199 | DOI | MR | Zbl