Elementary equivalence of generalized incidence rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 7, pp. 37-42
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we prove that if two generalized incidence rings $I(P_1,R_1)$ and $I(P_2,R_2)$ are elementarily equivalent, then the corresponding ordered sets $(P_1,R_1)$ and $(P_2,R_2)$ are elementarily equivalent.
@article{FPM_2008_14_7_a3,
author = {E. I. Bunina and A. S. Dobrokhotova-Maykova},
title = {Elementary equivalence of generalized incidence rings},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {37--42},
publisher = {mathdoc},
volume = {14},
number = {7},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a3/}
}
TY - JOUR AU - E. I. Bunina AU - A. S. Dobrokhotova-Maykova TI - Elementary equivalence of generalized incidence rings JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2008 SP - 37 EP - 42 VL - 14 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a3/ LA - ru ID - FPM_2008_14_7_a3 ER -
E. I. Bunina; A. S. Dobrokhotova-Maykova. Elementary equivalence of generalized incidence rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 7, pp. 37-42. http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a3/