Elementary equivalence of generalized incidence rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 7, pp. 37-42

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove that if two generalized incidence rings $I(P_1,R_1)$ and $I(P_2,R_2)$ are elementarily equivalent, then the corresponding ordered sets $(P_1,R_1)$ and $(P_2,R_2)$ are elementarily equivalent.
@article{FPM_2008_14_7_a3,
     author = {E. I. Bunina and A. S. Dobrokhotova-Maykova},
     title = {Elementary equivalence of generalized incidence rings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {37--42},
     publisher = {mathdoc},
     volume = {14},
     number = {7},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a3/}
}
TY  - JOUR
AU  - E. I. Bunina
AU  - A. S. Dobrokhotova-Maykova
TI  - Elementary equivalence of generalized incidence rings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2008
SP  - 37
EP  - 42
VL  - 14
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a3/
LA  - ru
ID  - FPM_2008_14_7_a3
ER  - 
%0 Journal Article
%A E. I. Bunina
%A A. S. Dobrokhotova-Maykova
%T Elementary equivalence of generalized incidence rings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2008
%P 37-42
%V 14
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a3/
%G ru
%F FPM_2008_14_7_a3
E. I. Bunina; A. S. Dobrokhotova-Maykova. Elementary equivalence of generalized incidence rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 7, pp. 37-42. http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a3/