Elementary equivalence of generalized incidence rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 7, pp. 37-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove that if two generalized incidence rings $I(P_1,R_1)$ and $I(P_2,R_2)$ are elementarily equivalent, then the corresponding ordered sets $(P_1,R_1)$ and $(P_2,R_2)$ are elementarily equivalent.
@article{FPM_2008_14_7_a3,
     author = {E. I. Bunina and A. S. Dobrokhotova-Maykova},
     title = {Elementary equivalence of generalized incidence rings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {37--42},
     publisher = {mathdoc},
     volume = {14},
     number = {7},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a3/}
}
TY  - JOUR
AU  - E. I. Bunina
AU  - A. S. Dobrokhotova-Maykova
TI  - Elementary equivalence of generalized incidence rings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2008
SP  - 37
EP  - 42
VL  - 14
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a3/
LA  - ru
ID  - FPM_2008_14_7_a3
ER  - 
%0 Journal Article
%A E. I. Bunina
%A A. S. Dobrokhotova-Maykova
%T Elementary equivalence of generalized incidence rings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2008
%P 37-42
%V 14
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a3/
%G ru
%F FPM_2008_14_7_a3
E. I. Bunina; A. S. Dobrokhotova-Maykova. Elementary equivalence of generalized incidence rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 7, pp. 37-42. http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a3/

[1] Maltsev A. I., “Ob elementarnykh svoistvakh lineinykh grupp”, Problemy matematiki i mekhaniki, Novosibirsk, 1961, 110–132 | Zbl

[2] Stenli R., Perechislitelnaya kombinatorika, Mir, M., 1990 | MR

[3] Shmatkov V. D., Izomorfizmy i avtomorfizmy kolets i algebr intsidentnosti, Dis. $\dots$ kand. fiz.-mat. nauk, M., 1994

[4] Belding W., “Incidence rings of pre-ordered sets”, Notre Dame J. Formal Logic, 14 (1973), 481–509 | DOI | MR | Zbl

[5] Doubilet P., Rota G.-C., Stanley R. P., “On the foundation of combinatorial theory. VI. The idea of generating functions”, Proc. of the Sixth Berkeley Symp. on Math. Stat. and Probab., Vol. 2, Univ. California Press, 1972, 267–318 ; Perechislitelnye zadachi kombinatornogo analiza, eds. G. P. Gavrilov, Mir, M., 1979, 160–228 | MR | Zbl | MR

[6] Finch P. D., “On the Möbius-function of non singular binary relation”, Bull. Austral. Math. Soc., 3 (1970), 155–162 | DOI | MR | Zbl

[7] Rota G.-C., “On the foundation of combinatorial theory. I. Theory of Möbius functions”, Z. Wahrsch. Verw. Gebiete, 2:4 (1964), 340–368 | DOI | MR | Zbl

[8] Stanley R. P., “Structure of incidence algebras and their automorphism groups”, Amer. Math. Soc. Bull., 76 (1970), 1236–1239 | DOI | MR | Zbl

[9] Tainiter M., “Incidence algebras on generalized semigroups”, J. Combin. Theory, 11 (1971), 170–177 | DOI | MR | Zbl