What do the Engel laws and positive laws have in common?
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 7, pp. 175-183

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is inspired by a question of R. Burns: What do the Engel laws and positive laws have in common that forces finitely generated, locally graded groups satisfying them to be nilpotent-by-finite? The answer is that these laws have the same so-called Engel construction.
@article{FPM_2008_14_7_a14,
     author = {O. Macedo\'nska},
     title = {What do the {Engel} laws and positive laws have in common?},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {175--183},
     publisher = {mathdoc},
     volume = {14},
     number = {7},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a14/}
}
TY  - JOUR
AU  - O. Macedońska
TI  - What do the Engel laws and positive laws have in common?
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2008
SP  - 175
EP  - 183
VL  - 14
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a14/
LA  - ru
ID  - FPM_2008_14_7_a14
ER  - 
%0 Journal Article
%A O. Macedońska
%T What do the Engel laws and positive laws have in common?
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2008
%P 175-183
%V 14
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a14/
%G ru
%F FPM_2008_14_7_a14
O. Macedońska. What do the Engel laws and positive laws have in common?. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 7, pp. 175-183. http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a14/