Multiplicative $A_\infty$-structure in terms of spectral sequences of fibrations
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 6, pp. 141-175.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, the technique of spectral sequences with $A_\infty$-structures in their terms is developed for differential algebras with filtrations. Applications of this technique to the multiplicative spectral sequences of fibrations are given. We show that if the base of fibration is connected and simply connected, then the structure graded $A_\infty$-algebra in the second term of the spectral sequence of a fibration is the tensor product of the cohomology $A_\infty$-algebra of the base and the cohomology $A_\infty$-algebra of the fibre of this fibration.
@article{FPM_2008_14_6_a8,
     author = {S. V. Lapin},
     title = {Multiplicative $A_\infty$-structure in terms of spectral sequences of fibrations},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {141--175},
     publisher = {mathdoc},
     volume = {14},
     number = {6},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_6_a8/}
}
TY  - JOUR
AU  - S. V. Lapin
TI  - Multiplicative $A_\infty$-structure in terms of spectral sequences of fibrations
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2008
SP  - 141
EP  - 175
VL  - 14
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2008_14_6_a8/
LA  - ru
ID  - FPM_2008_14_6_a8
ER  - 
%0 Journal Article
%A S. V. Lapin
%T Multiplicative $A_\infty$-structure in terms of spectral sequences of fibrations
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2008
%P 141-175
%V 14
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2008_14_6_a8/
%G ru
%F FPM_2008_14_6_a8
S. V. Lapin. Multiplicative $A_\infty$-structure in terms of spectral sequences of fibrations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 6, pp. 141-175. http://geodesic.mathdoc.fr/item/FPM_2008_14_6_a8/

[1] Gabriel P., Tsisman M., Kategorii chastnykh i teoriya gomotopii, Mir, M., 1971 | MR | Zbl

[2] Kadeishvili T. V., “K teorii gomologii rassloënnykh prostranstv”, Uspekhi mat. nauk, 35:3 (1980), 183–188 | MR | Zbl

[3] Lapin S. V., “Differentsialnye vozmuscheniya i $D_\infty$-differentsialnye moduli”, Mat. sb., 192:11 (2001), 55–76 | MR | Zbl

[4] Lapin S. V., “$D_\infty$-differentsialnye $A_\infty$-algebry i spektralnye posledovatelnosti”, Mat. sb., 193:1 (2002), 119–142 | MR | Zbl

[5] Lapin S. V., “$(DA)_\infty$-moduli nad $(DA)_\infty$-algebrami i spektralnye posledovatelnosti”, Izv. RAN. Ser. mat., 66:3 (2002), 103–130 | MR | Zbl

[6] Lapin S. V., “$D_\infty$-differentsialy i $A_\infty$-struktury v spektralnykh posledovatelnostyakh”, Sovrem. mat. i eë pril., 2003, no. 1, 56–91

[7] Lapin S. V., “$D_\infty$-differentsialnye $E_\infty$-algebry i multiplikativnye spektralnye posledovatelnosti”, Mat. sb., 196:11 (2005), 75–108 | MR | Zbl

[8] Lapin S. V., “$D_\infty$-differentsialnye $E_\infty$-algebry i operatsii Stinroda v spektralnykh posledovatelnostyakh”, Sovrem. mat. i eë pril., 2006, no. 43, 66–97

[9] Lapin S. V., “$D_\infty$-differentsialnye $E_\infty$-algebry i spektralnye posledovatelnosti $D_\infty$-differentsialnykh modulei”, Fundament. i prikl. mat., 13:8 (2007), 105–125 | MR

[10] Lapin S. V., “$D_\infty$-differentsialnye $E_\infty$-algebry i spektralnye posledovatelnosti rassloenii”, Mat. sb., 198:10 (2007), 3–30 | MR | Zbl

[11] Smirnov V. A., “Gomologii rassloënnykh prostranstv”, Uspekhi mat. nauk, 35:3 (1980), 227–230 | MR | Zbl

[12] Smirnov V. A., “O kotsepnom komplekse topologicheskogo prostranstva”, Mat. sb., 115(157):1 (1981), 146–158 | MR | Zbl

[13] Smirnov V. A., “Gomotopicheskaya teoriya koalgebr”, Izv. AN SSSR. Ser. mat., 49:6 (1985), 1302–1321 | MR | Zbl

[14] Smirnov V. A., “Gomologii $B$-konstruktsii i ko-$B$-konstruktsii”, Izv. RAN. Ser. mat., 58:4 (1994), 80–96 | MR | Zbl

[15] Smirnov V. A., “Algebry Li nad operadami i ikh primenenie v teorii gomotopii”, Izv. RAN. Ser. mat., 62:3 (1998), 121–154 | MR | Zbl

[16] Smirnov V. A., Simplitsialnye i operadnye metody v algebraicheskoi topologii, Faktorial, M., 2002

[17] Brown E., “Twisted tensor products”, Ann. Math., 69:1 (1959), 223–240 | DOI | MR

[18] Gugenheim V. K. A. M., Lambe L. A., Stasheff J. D., “Perturbation theory in differential homological algebra. I”, Illinois J. Math., 33 (1989), 566–582 | MR | Zbl

[19] Gugenheim V. K. A. M., Lambe L. A., Stasheff J. D., “Perturbation theory in differential homological algebra. II”, Illinois J. Math., 35 (1991), 357–373 | MR | Zbl

[20] Gugenheim V. K. A. M., Stasheff J. D., “On perturbations and $A_\infty$-structures”, Bull. Soc. Math. Belg., 38 (1986), 237–246 | MR | Zbl

[21] J. McCleary (ed.), Higher Homotopy Structures in Topology and Mathematical Physics, Proc. Int. Conf. to Honor the 60th Birthday of Jim Stasheff (June 13–15, 1996, Poughkeepsie, NY, USA), Contemp. Math., 227, Amer. Math. Soc., Providence, 1999 | MR | Zbl

[22] Kontsevich M., “Homological algebra of mirror symmetry”, Proc. Int. Congress of Mathematicians, Vol. 1 (Zürich, Switzerland, August 3–11, 1994), Birkhäuser, Basel, 1995, 120–139 | MR | Zbl

[23] Leray J., “L'anneau spectral et l'anneau filtre d'homologie d'une espace localement compact et, d'une application continue”, J. Math. Pures Appl., 29 (1950), 1–139 | MR | Zbl

[24] May J. P., Simplicial Objects in Algebraic Topology, Van Nostrand, Princeton, 1967 | MR

[25] Quillen D., Homotopical Algebra, Lect. Notes Math., 43, Springer, Berlin, 1967 | MR | Zbl

[26] Serre J. P., “Homologue singuliere des espaces fibres”, Ann. Math., 54:2 (1951), 425–505 | DOI | MR | Zbl

[27] Stasheff J. D., “Homotopy associativity of $H$-spaces. I”, Trans. Amer. Math. Soc., 108:2 (1963), 275–292 ; “Homotopy associativity of $H$-spaces. II”, 293–312 | DOI | MR | Zbl