Multiplicative $A_\infty$-structure in terms of spectral sequences of fibrations
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 6, pp. 141-175
Voir la notice de l'article provenant de la source Math-Net.Ru
In the present paper, the technique of spectral sequences with $A_\infty$-structures in their terms is developed for differential algebras with filtrations. Applications of this technique to the multiplicative spectral sequences of fibrations are given. We show that if the base of fibration is connected and simply connected, then the structure graded $A_\infty$-algebra in the second term of the spectral sequence of a fibration is the tensor product of the cohomology $A_\infty$-algebra of the base and the cohomology $A_\infty$-algebra of the fibre of this fibration.
@article{FPM_2008_14_6_a8,
author = {S. V. Lapin},
title = {Multiplicative $A_\infty$-structure in terms of spectral sequences of fibrations},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {141--175},
publisher = {mathdoc},
volume = {14},
number = {6},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_6_a8/}
}
TY - JOUR AU - S. V. Lapin TI - Multiplicative $A_\infty$-structure in terms of spectral sequences of fibrations JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2008 SP - 141 EP - 175 VL - 14 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2008_14_6_a8/ LA - ru ID - FPM_2008_14_6_a8 ER -
S. V. Lapin. Multiplicative $A_\infty$-structure in terms of spectral sequences of fibrations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 6, pp. 141-175. http://geodesic.mathdoc.fr/item/FPM_2008_14_6_a8/