On some near to nilpotent groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 6, pp. 121-134.

Voir la notice de l'article provenant de la source Math-Net.Ru

Locally (soluble-by-finite) groups each of whose subgroups is either pronormal or subnormal are studied. It is proven that such torsion-free groups are nilpotent and a sketch of the structure of locally finite groups of this type is obtained.
@article{FPM_2008_14_6_a6,
     author = {L. A. Kurdachenko and I. Ya. Subbotin and V. A. {\CYRS}hupordya},
     title = {On some near to nilpotent groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {121--134},
     publisher = {mathdoc},
     volume = {14},
     number = {6},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_6_a6/}
}
TY  - JOUR
AU  - L. A. Kurdachenko
AU  - I. Ya. Subbotin
AU  - V. A. Сhupordya
TI  - On some near to nilpotent groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2008
SP  - 121
EP  - 134
VL  - 14
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2008_14_6_a6/
LA  - ru
ID  - FPM_2008_14_6_a6
ER  - 
%0 Journal Article
%A L. A. Kurdachenko
%A I. Ya. Subbotin
%A V. A. Сhupordya
%T On some near to nilpotent groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2008
%P 121-134
%V 14
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2008_14_6_a6/
%G ru
%F FPM_2008_14_6_a6
L. A. Kurdachenko; I. Ya. Subbotin; V. A. Сhupordya. On some near to nilpotent groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 6, pp. 121-134. http://geodesic.mathdoc.fr/item/FPM_2008_14_6_a6/

[1] Olshanskii A. Yu., Geometriya opredelyayuschikh sootnoshenii v gruppakh, Nauka, M., 1989 | MR

[2] Chernikov S. N., Gruppy s zadannymi svoistvami sistemy podgrupp, Nauka, M., 1980 | MR

[3] Casolo C., “Torsion-free groups in which every subgroup is subnormal”, Rend. Circ. Mat. Palermo, 50 (2001), 321–324 | DOI | MR | Zbl

[4] Casolo C., “On the structure of groups with all subgroups subnormal”, J. Group Theory, 5 (2002), 293–300 | DOI | MR

[5] Casolo C., “Groups with all subgroups subnormal”, Conf. “Advances in Group Theory and Applications 2007” (Otranto, 4–8 June 2007, Italy)

[6] Ebert G., Bauman S., “A note of subnormal and abnormal chains”, J. Algebra, 36 (1975), 287–293 | DOI | MR | Zbl

[7] De Falco M., Kurdachenko L. A., Subbotin I. Ya., “Groups with only abnormal and subnormal subgroups”, Atti Sem. Mat. Fis. Univ. Modena, 47 (1998), 435–442 | MR

[8] Fattahi A., “Groups with only normal and abnormal subgroups”, J. Algebra, 28:1 (1974), 15–19 | DOI | MR | Zbl

[9] Kurdachenko L. A., Otal J., Subbotin I. Ya., Groups with Prescribed Quotient Groups and Associated Module Theory, World Scientific, New Jersey, 2002 | MR | Zbl

[10] Kurdachenko L. A., Otal J., Subbotin I. Ya., Artinian Modules over Group Rings, Birkhäuser, Basel, 2007 | MR | Zbl

[11] Kurdachenko L. A., Smith H., “Groups with all subgroups either subnormal or self-normalizing”, J. Pure Appl. Algebra, 196 (2005), 271–278 | DOI | MR | Zbl

[12] Kuzennyi N. F., Subbotin I. Ya., “Groups in which all subgroups are pronormal”, Ukr. Mat. Zh., 39:3 (1987), 325–329 | MR

[13] Kuzennyi N. F., Subbotin I. Ya., “New characterization of locally nilpotent $\overline{IH}$-groups”, Ukr. Mat. Zh., 40 (1988), 322–326 | MR

[14] Legovini P., “Gruppi finiti i cui sottogruppi sono o subnormali o pronormali”, Rend. Sem. Mat. Univ. Padova, 58 (1977), 129–147 | MR | Zbl

[15] Legovini P., “Gruppi finiti i cui sottogruppi sono o subnormali o pronormali. II”, Rend. Sem. Mat. Univ. Padova, 65 (1981), 47–51 | MR | Zbl

[16] Lennox J. C., Stonehewer S. E., Subnormal Subgroups of Groups, Clarendon Press, Oxford, 1992 | MR

[17] Möhres W., “Auflösbarkeit von Gruppen deren Untergruppen alle subnormal sind”, Arch. Math., 54 (1990), 232–235 | DOI | MR | Zbl

[18] Robinson D. J. S., “Groups in which normality is a transitive relation”, Proc. Cambridge Philos. Soc., 60 (1964), 21–38 | DOI | MR | Zbl

[19] Rose J. S., “Nilpotent subgroups of finite soluble groups”, Math. Z., 106 (1968), 97–112 | DOI | MR | Zbl

[20] Schur I., “Über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen”, J. Reine Angew. Math., 127 (1904), 20–50 | DOI | Zbl

[21] Smith H., “Torsion-free groups with all subgroups subnormal”, Arch. Math., 76:1 (2001), 1–6 | DOI | MR | Zbl

[22] Subbotin I. Ya., Kuzenny N. F., “Locally soluble groups in which all infinite subgroups are pronormal”, Izv. Vyssh. Uchebn. Zaved. Mat., 32:11 (1988), 126–131 | MR | Zbl