Almost empty hexagons
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 6, pp. 91-120
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this work, new nontrivial bounds are obtained for the minimum number of points in general position on the plane, among which one certainly finds the set of vertices of a convex hexagon with not more than one point of the initial set inside.
@article{FPM_2008_14_6_a5,
     author = {V. A. Koshelev},
     title = {Almost empty hexagons},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {91--120},
     year = {2008},
     volume = {14},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_6_a5/}
}
TY  - JOUR
AU  - V. A. Koshelev
TI  - Almost empty hexagons
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2008
SP  - 91
EP  - 120
VL  - 14
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/FPM_2008_14_6_a5/
LA  - ru
ID  - FPM_2008_14_6_a5
ER  - 
%0 Journal Article
%A V. A. Koshelev
%T Almost empty hexagons
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2008
%P 91-120
%V 14
%N 6
%U http://geodesic.mathdoc.fr/item/FPM_2008_14_6_a5/
%G ru
%F FPM_2008_14_6_a5
V. A. Koshelev. Almost empty hexagons. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 6, pp. 91-120. http://geodesic.mathdoc.fr/item/FPM_2008_14_6_a5/

[1] Koshelev V. A., “Zadacha Erdësha–Sekeresha o pustykh shestiugolnikakh na ploskosti”, Mat. sb. (to appear)

[2] Sendov Bl., “Obyazatelnye konfiguratsii tochek na ploskosti”, Fundament. i prikl. mat., 1:2 (1995), 491–516 | MR | Zbl

[3] Kholl M., Kombinatorika, Mir, M., 1970 | MR

[4] Erdős P., “Some more problems in elementary geometry”, Austral. Math. Soc. Gaz., 5 (1978), 52–54 | MR | Zbl

[5] Erdős P., Szekeres G., “A combinatorial problem in geometry”, Compositio Math., 2 (1935), 463–470 | MR | Zbl

[6] Erdős P., Szekeres G., “On some extremum problems in elementary geometry”, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 1961, no. 3–4, 53–62 | MR | Zbl

[7] Gerken T., “On empty convex hexagons in planar point set”, Discrete Comput. Geom., 39 (2008), 239–272 | DOI | MR | Zbl

[8] Graham R. L., Rothschild B. L., Spencer J. H., Ramsey Theory, Wiley, New York, 1990 | MR

[9] Harborth H., “Konvexe Fünfecke in ebenen Punktmengen”, Elem. Math., 33 (1978), 116–118 | MR | Zbl

[10] Horton J. D., “Sets with no empty 7-gons”, Can. Math. Bull., 26 (1983), 482–484 | DOI | MR | Zbl

[11] Morris W., Soltan V., “The Erdős–Szekeres problem on points in convex position”, Bull. Amer. Math. Soc., 37:4 (2000), 437–458 | DOI | MR | Zbl

[12] Nicolas C., “The empty hexagon theorem”, Discrete Comput. Geom., 38:2 (2007), 389–397 | DOI | MR | Zbl

[13] Nyklova H., “Almost empty polygons”, Studia Sci. Math. Hungar., 40:3 (2003), 269–286 | MR | Zbl

[14] Overmars M., “Finding sets of points without empty convex 6-gons”, Discrete Comput. Geom., 29 (2003), 153–158 | MR | Zbl

[15] Overmars M., Scholten B., Vincent I., “Sets without empty convex 6-gons”, Bull. European Assoc. Theoret. Comput. Sci., 37 (1989), 160–168 | MR | Zbl

[16] Ramsey F. P., “On a problem of formal logic”, Proc. London Math. Soc. Ser. 2, 30 (1930), 264–286 | DOI

[17] Szekeres G., Peters L., “Computer solution to the 17-point Erdős–Szekeres problem”, ANZIAM J., 48 (2006), 151–164 | DOI | MR | Zbl

[18] Tóth G., Valtr P., “The Erdős–Szekeres theorem: Upper bounds and related results”, Combinatorial and Computational Geometry, Math. Sci. Res. Inst. Publ., 52, Cambridge Univ. Press, Cambridge, 2005, 557–568 | MR | Zbl

[19] Valtr P., On the empty hexagons, . http://kam.mff.cuni.cz/~valtr/h.ps