Almost empty hexagons
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 6, pp. 91-120.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, new nontrivial bounds are obtained for the minimum number of points in general position on the plane, among which one certainly finds the set of vertices of a convex hexagon with not more than one point of the initial set inside.
@article{FPM_2008_14_6_a5,
     author = {V. A. Koshelev},
     title = {Almost empty hexagons},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {91--120},
     publisher = {mathdoc},
     volume = {14},
     number = {6},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_6_a5/}
}
TY  - JOUR
AU  - V. A. Koshelev
TI  - Almost empty hexagons
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2008
SP  - 91
EP  - 120
VL  - 14
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2008_14_6_a5/
LA  - ru
ID  - FPM_2008_14_6_a5
ER  - 
%0 Journal Article
%A V. A. Koshelev
%T Almost empty hexagons
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2008
%P 91-120
%V 14
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2008_14_6_a5/
%G ru
%F FPM_2008_14_6_a5
V. A. Koshelev. Almost empty hexagons. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 6, pp. 91-120. http://geodesic.mathdoc.fr/item/FPM_2008_14_6_a5/

[1] Koshelev V. A., “Zadacha Erdësha–Sekeresha o pustykh shestiugolnikakh na ploskosti”, Mat. sb. (to appear)

[2] Sendov Bl., “Obyazatelnye konfiguratsii tochek na ploskosti”, Fundament. i prikl. mat., 1:2 (1995), 491–516 | MR | Zbl

[3] Kholl M., Kombinatorika, Mir, M., 1970 | MR

[4] Erdős P., “Some more problems in elementary geometry”, Austral. Math. Soc. Gaz., 5 (1978), 52–54 | MR | Zbl

[5] Erdős P., Szekeres G., “A combinatorial problem in geometry”, Compositio Math., 2 (1935), 463–470 | MR | Zbl

[6] Erdős P., Szekeres G., “On some extremum problems in elementary geometry”, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 1961, no. 3–4, 53–62 | MR | Zbl

[7] Gerken T., “On empty convex hexagons in planar point set”, Discrete Comput. Geom., 39 (2008), 239–272 | DOI | MR | Zbl

[8] Graham R. L., Rothschild B. L., Spencer J. H., Ramsey Theory, Wiley, New York, 1990 | MR

[9] Harborth H., “Konvexe Fünfecke in ebenen Punktmengen”, Elem. Math., 33 (1978), 116–118 | MR | Zbl

[10] Horton J. D., “Sets with no empty 7-gons”, Can. Math. Bull., 26 (1983), 482–484 | DOI | MR | Zbl

[11] Morris W., Soltan V., “The Erdős–Szekeres problem on points in convex position”, Bull. Amer. Math. Soc., 37:4 (2000), 437–458 | DOI | MR | Zbl

[12] Nicolas C., “The empty hexagon theorem”, Discrete Comput. Geom., 38:2 (2007), 389–397 | DOI | MR | Zbl

[13] Nyklova H., “Almost empty polygons”, Studia Sci. Math. Hungar., 40:3 (2003), 269–286 | MR | Zbl

[14] Overmars M., “Finding sets of points without empty convex 6-gons”, Discrete Comput. Geom., 29 (2003), 153–158 | MR | Zbl

[15] Overmars M., Scholten B., Vincent I., “Sets without empty convex 6-gons”, Bull. European Assoc. Theoret. Comput. Sci., 37 (1989), 160–168 | MR | Zbl

[16] Ramsey F. P., “On a problem of formal logic”, Proc. London Math. Soc. Ser. 2, 30 (1930), 264–286 | DOI

[17] Szekeres G., Peters L., “Computer solution to the 17-point Erdős–Szekeres problem”, ANZIAM J., 48 (2006), 151–164 | DOI | MR | Zbl

[18] Tóth G., Valtr P., “The Erdős–Szekeres theorem: Upper bounds and related results”, Combinatorial and Computational Geometry, Math. Sci. Res. Inst. Publ., 52, Cambridge Univ. Press, Cambridge, 2005, 557–568 | MR | Zbl

[19] Valtr P., On the empty hexagons, . http://kam.mff.cuni.cz/~valtr/h.ps