Lattice properties of epigroups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 6, pp. 219-229.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of this paper is to give a survey of the first advances in the study of diverse interconnections between epigroups and their subepigroup lattices.
@article{FPM_2008_14_6_a12,
     author = {L. N. Shevrin},
     title = {Lattice properties of epigroups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {219--229},
     publisher = {mathdoc},
     volume = {14},
     number = {6},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_6_a12/}
}
TY  - JOUR
AU  - L. N. Shevrin
TI  - Lattice properties of epigroups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2008
SP  - 219
EP  - 229
VL  - 14
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2008_14_6_a12/
LA  - ru
ID  - FPM_2008_14_6_a12
ER  - 
%0 Journal Article
%A L. N. Shevrin
%T Lattice properties of epigroups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2008
%P 219-229
%V 14
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2008_14_6_a12/
%G ru
%F FPM_2008_14_6_a12
L. N. Shevrin. Lattice properties of epigroups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 6, pp. 219-229. http://geodesic.mathdoc.fr/item/FPM_2008_14_6_a12/

[1] Sudzuki M., Stroenie gruppy i stroenie struktury eë podgrupp, IL, M., 1960 | MR

[2] Shevrin L. N., “Polugruppy”, Obschaya algebra, ed. L. A. Skornyakov, Nauka, M., 1991, 11–191

[3] Shevrin L. N., “K teorii epigrupp. I”, Mat. sb., 185:8 (1994), 129–160 | MR | Zbl

[4] Shevrin L. N., Ovsyannikov A. Ya., Polugruppy i ikh podpolugruppovye reshëtki, Ch. 1, Izd. Ural. un-ta, Sverdlovsk, 1990 ; Ч. 2, 1991 | MR | Zbl

[5] A. V. Mikhalev, G. F. Pilz (eds.), The Concise Handbook of Algebra, Kluwer Academic, Dordrecht, 2002 | MR | Zbl

[6] Schmidt R., Subgroup Lattices of Groups, Walter de Gruyter, Berlin, 1994 | MR | Zbl

[7] Shevrin L. N., “Epigroups”, Structural Theory of Automata, Semigroups and Universal Algebra, NATO Sci. Ser. II. Mathematics, Physics and Chemistry, 207, eds. V. B. Kudryavtsev, I. G. Rosenberg, Springer, Berlin, 2005, 331–380 | MR

[8] Shevrin L. N., “On epigroups and their subepigroup lattices”, The 2nd Int. Congress in Algebras and Combinatorics, Xian, 2007, 25–26

[9] Shevrin L. N., Ovsyannikov A. J., “Semigroups and their subsemigroup lattices”, Semigroup Forum, 27 (1983), 1–154 | DOI | MR | Zbl

[10] Shevrin L. N., Ovsyannikov A. J., Semigroups and Their Subsemigroup Lattices, Kluwer Academic, Dordrecht, 1996 | MR | Zbl

[11] Shevrin L. N., Ovsyannikov A. J., “On lattice properties of epigroups”, Algebra Universalis, 59 (2008), 209–235 | DOI | MR | Zbl

[12] Wang Y., Jin Y., “Epigroups whose subepigroup lattice is 0-modular or 0-distributive”, Semigroup Forum, 78:2 (2009), 337–342 | DOI | MR | Zbl

[13] Wang Y., Luo Y., Epigroups whose subepigroup lattice is meet semidistributive, Preprint, 2008