Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2008_14_6_a10, author = {U. Rehmann and S. V. Tikhonov and V. I. Yanchevskii}, title = {Symbol algebras and cyclicity of algebras after a~scalar extension}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {193--209}, publisher = {mathdoc}, volume = {14}, number = {6}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_6_a10/} }
TY - JOUR AU - U. Rehmann AU - S. V. Tikhonov AU - V. I. Yanchevskii TI - Symbol algebras and cyclicity of algebras after a~scalar extension JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2008 SP - 193 EP - 209 VL - 14 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2008_14_6_a10/ LA - ru ID - FPM_2008_14_6_a10 ER -
%0 Journal Article %A U. Rehmann %A S. V. Tikhonov %A V. I. Yanchevskii %T Symbol algebras and cyclicity of algebras after a~scalar extension %J Fundamentalʹnaâ i prikladnaâ matematika %D 2008 %P 193-209 %V 14 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2008_14_6_a10/ %G ru %F FPM_2008_14_6_a10
U. Rehmann; S. V. Tikhonov; V. I. Yanchevskii. Symbol algebras and cyclicity of algebras after a~scalar extension. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 6, pp. 193-209. http://geodesic.mathdoc.fr/item/FPM_2008_14_6_a10/
[1] Burbaki N., Algebra. Mnogochleny i polya. Uporyadochennye gruppy, Gl. IV–VI, Nauka, M., 1965 | MR
[2] Pirs R., Assotsiativnye algebry, Mir, M., 1986 | MR
[3] Prokopchuk A. V., Tikhonov S. V., Yanchevskii V. I., “Ob obschikh elementakh v gruppakh $\mathrm{SK}_1$ dlya tsentralnykh prostykh algebr”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk, 2008, no. 3, 35–42 | MR
[4] Suslin A. A., “Snova ob $\mathrm{SK}_1$ algebr s deleniem i o kogomologiyakh Galua”, Tr. Sankt-Peterburg. mat. o-va, 12, 2005
[5] Albert A. A., “A construction of non-cyclic normal division algebras”, Bull. Amer. Math. Soc., 38:6 (1932), 449–456 | DOI | MR | Zbl
[6] Amitsur S. A., “On central division algebras”, Israel J. Math., 12 (1972), 408–420 | DOI | MR | Zbl
[7] Van den Berg M., Schofield A., “The index of a Brauer class on a Brauer–Severi variety”, Trans. Amer. Math. Soc., 333:2 (1992), 729–739 | DOI | MR | Zbl
[8] Van den Berg M., Schofield A., “Division algebra coproducts of index $n$”, Trans. Amer. Math. Soc., 341:2 (1994), 505–517 | DOI | MR | Zbl
[9] Berhuy G., Frings C., “On the second trace form of central simple algebras in characteristic two”, Manuscripta Math., 106 (2001), 1–12 | DOI | MR | Zbl
[10] Gille Ph., “Le problème de Kneser–Tits”, Séminaire BOURBAKI 60ème année, 2006–2007, No 983 | MR
[11] Gille Ph., Szamuely T., Central Simple Algebras and Galois Cohomology, Cambridge Stud. Adv. Math., 101, Cambridge Univ. Press, Cambridge, 2006 | MR | Zbl
[12] Harris J., Algebraic Geometry. A First Course, Grad. Texts Math., 133, Springer, New York, 1992 | MR | Zbl
[13] Jacobson N., Finite-Dimensional Division Algebras, Springer, Berlin, 1996 | MR | Zbl
[14] De Jong A. J., “The period-index problem for the Brauer group of an algebraic surface”, Duke Math. J., 123:1 (2004), 71–94 | DOI | MR | Zbl
[15] Kersten I., Rehmann U., “Excellent algebraic groups. I”, J. Algebra, 200:1 (1998), 334–346 | DOI | MR | Zbl
[16] Kunyavskiĭ B. È., Rowen L. H., Tikhonov S. V., Yanchevskiĭ V. I., “Bicyclic algebras of prime exponent over function fields”, Trans. Amer. Math. Soc., 358:6 (2006), 2579–2610 | DOI | MR | Zbl
[17] Lieblich M., “Twisted sheaves and the period-index problem”, Compositio Math., 144:1 (2008), 1–31 | DOI | MR | Zbl
[18] Merkurjev A. S., “Generic element in $\mathrm{SK}_1$ for simple algebras”, $K$-Theory, 7 (1993), 1–3 | DOI | MR | Zbl
[19] Miki H., “On Grunwald–Hasse–Wang's theorem”, J. Math. Soc. Japan, 30:2 (1978), 313–325 | DOI | MR | Zbl
[20] Saltman D. J., Lectures on Division Algebras, Amer. Math. Soc., Providence, 1999 | MR | Zbl
[21] Suslin A. A., “$\mathrm{SK}_1$ of division algebras and Galois cohomology”, Algebraic $K$-Theory, Adv. Soviet Math., 4, Amer. Math. Soc., Providence, 1991, 75–99 | MR