Symbol algebras and cyclicity of algebras after a~scalar extension
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 6, pp. 193-209.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a field $F$ and a family of central simple $F$-algebras we prove that there exists a regular field extension $E/F$ preserving indices of $F$-algebras such that all the algebras from the family are cyclic after scalar extension by $E$. Let $\mathcal A$ be a central simple algebra over a field $F$ of degree $n$ with a primitive $n$th root of unity $\rho_n$. We construct a quasi-affine $F$-variety $\mathrm{Symb}(\mathcal A)$ such that for a field extension $L/F$ $\mathrm{Symb}(\mathcal A)$ has an $L$-rational point if and only if $\mathcal A\otimes_FL$ is a symbol algebra. Let $\mathcal A$ be a central simple algebra over a field $F$ of degree $n$ and $K/F$ be a cyclic field extension of degree $n$. We construct a quasi-affine $F$-variety $C(\mathcal A,K)$ such that, for a field extension $L/F$ with the property $[KL:L]=[K:F]$, the variety $C(\mathcal A,K)$ has an $L$-rational point if and only if $KL$ is a subfield of $\mathcal A\otimes_FL$.
@article{FPM_2008_14_6_a10,
     author = {U. Rehmann and S. V. Tikhonov and V. I. Yanchevskii},
     title = {Symbol algebras and cyclicity of algebras after a~scalar extension},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {193--209},
     publisher = {mathdoc},
     volume = {14},
     number = {6},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_6_a10/}
}
TY  - JOUR
AU  - U. Rehmann
AU  - S. V. Tikhonov
AU  - V. I. Yanchevskii
TI  - Symbol algebras and cyclicity of algebras after a~scalar extension
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2008
SP  - 193
EP  - 209
VL  - 14
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2008_14_6_a10/
LA  - ru
ID  - FPM_2008_14_6_a10
ER  - 
%0 Journal Article
%A U. Rehmann
%A S. V. Tikhonov
%A V. I. Yanchevskii
%T Symbol algebras and cyclicity of algebras after a~scalar extension
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2008
%P 193-209
%V 14
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2008_14_6_a10/
%G ru
%F FPM_2008_14_6_a10
U. Rehmann; S. V. Tikhonov; V. I. Yanchevskii. Symbol algebras and cyclicity of algebras after a~scalar extension. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 6, pp. 193-209. http://geodesic.mathdoc.fr/item/FPM_2008_14_6_a10/

[1] Burbaki N., Algebra. Mnogochleny i polya. Uporyadochennye gruppy, Gl. IV–VI, Nauka, M., 1965 | MR

[2] Pirs R., Assotsiativnye algebry, Mir, M., 1986 | MR

[3] Prokopchuk A. V., Tikhonov S. V., Yanchevskii V. I., “Ob obschikh elementakh v gruppakh $\mathrm{SK}_1$ dlya tsentralnykh prostykh algebr”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk, 2008, no. 3, 35–42 | MR

[4] Suslin A. A., “Snova ob $\mathrm{SK}_1$ algebr s deleniem i o kogomologiyakh Galua”, Tr. Sankt-Peterburg. mat. o-va, 12, 2005

[5] Albert A. A., “A construction of non-cyclic normal division algebras”, Bull. Amer. Math. Soc., 38:6 (1932), 449–456 | DOI | MR | Zbl

[6] Amitsur S. A., “On central division algebras”, Israel J. Math., 12 (1972), 408–420 | DOI | MR | Zbl

[7] Van den Berg M., Schofield A., “The index of a Brauer class on a Brauer–Severi variety”, Trans. Amer. Math. Soc., 333:2 (1992), 729–739 | DOI | MR | Zbl

[8] Van den Berg M., Schofield A., “Division algebra coproducts of index $n$”, Trans. Amer. Math. Soc., 341:2 (1994), 505–517 | DOI | MR | Zbl

[9] Berhuy G., Frings C., “On the second trace form of central simple algebras in characteristic two”, Manuscripta Math., 106 (2001), 1–12 | DOI | MR | Zbl

[10] Gille Ph., “Le problème de Kneser–Tits”, Séminaire BOURBAKI 60ème année, 2006–2007, No 983 | MR

[11] Gille Ph., Szamuely T., Central Simple Algebras and Galois Cohomology, Cambridge Stud. Adv. Math., 101, Cambridge Univ. Press, Cambridge, 2006 | MR | Zbl

[12] Harris J., Algebraic Geometry. A First Course, Grad. Texts Math., 133, Springer, New York, 1992 | MR | Zbl

[13] Jacobson N., Finite-Dimensional Division Algebras, Springer, Berlin, 1996 | MR | Zbl

[14] De Jong A. J., “The period-index problem for the Brauer group of an algebraic surface”, Duke Math. J., 123:1 (2004), 71–94 | DOI | MR | Zbl

[15] Kersten I., Rehmann U., “Excellent algebraic groups. I”, J. Algebra, 200:1 (1998), 334–346 | DOI | MR | Zbl

[16] Kunyavskiĭ B. È., Rowen L. H., Tikhonov S. V., Yanchevskiĭ V. I., “Bicyclic algebras of prime exponent over function fields”, Trans. Amer. Math. Soc., 358:6 (2006), 2579–2610 | DOI | MR | Zbl

[17] Lieblich M., “Twisted sheaves and the period-index problem”, Compositio Math., 144:1 (2008), 1–31 | DOI | MR | Zbl

[18] Merkurjev A. S., “Generic element in $\mathrm{SK}_1$ for simple algebras”, $K$-Theory, 7 (1993), 1–3 | DOI | MR | Zbl

[19] Miki H., “On Grunwald–Hasse–Wang's theorem”, J. Math. Soc. Japan, 30:2 (1978), 313–325 | DOI | MR | Zbl

[20] Saltman D. J., Lectures on Division Algebras, Amer. Math. Soc., Providence, 1999 | MR | Zbl

[21] Suslin A. A., “$\mathrm{SK}_1$ of division algebras and Galois cohomology”, Algebraic $K$-Theory, Adv. Soviet Math., 4, Amer. Math. Soc., Providence, 1991, 75–99 | MR