On the chromatic number of~$\mathbb R^9$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 5, pp. 139-154.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, the previous lower bound is considerably strengthened for the chromatic number of the nine-dimensional space.
@article{FPM_2008_14_5_a8,
     author = {A. B. Kupavskii and A. M. Raigorodskii},
     title = {On the chromatic number of~$\mathbb R^9$},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {139--154},
     publisher = {mathdoc},
     volume = {14},
     number = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_5_a8/}
}
TY  - JOUR
AU  - A. B. Kupavskii
AU  - A. M. Raigorodskii
TI  - On the chromatic number of~$\mathbb R^9$
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2008
SP  - 139
EP  - 154
VL  - 14
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2008_14_5_a8/
LA  - ru
ID  - FPM_2008_14_5_a8
ER  - 
%0 Journal Article
%A A. B. Kupavskii
%A A. M. Raigorodskii
%T On the chromatic number of~$\mathbb R^9$
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2008
%P 139-154
%V 14
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2008_14_5_a8/
%G ru
%F FPM_2008_14_5_a8
A. B. Kupavskii; A. M. Raigorodskii. On the chromatic number of~$\mathbb R^9$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 5, pp. 139-154. http://geodesic.mathdoc.fr/item/FPM_2008_14_5_a8/

[1] Guterman A. E., Lyubimov V. K., Raigorodskii A. M., Usachëv S. A., “O chislakh nezavisimosti grafov rasstoyanii s vershinami v $\{-1,0,1\}^n$”, Mat. zametki, 86:5 (2009), 794–796 | MR | Zbl

[2] Ivanov L. L., “Otsenka khromaticheskogo chisla prostranstva $\mathbb R^4$”, Uspekhi mat. nauk, 61:5 (2006), 371–372 | MR

[3] Kuzyurin N. N., “Asimptoticheskoe issledovanie zadachi o pokrytii”, Problemy kibernetiki, 37, Nauka, M., 1980, 19–56 | MR

[4] Raigorodskii A. M., “Sistemy obschikh predstavitelei”, Fundament. i prikl. mat., 5:3 (1999), 851–860 | MR | Zbl

[5] Raigorodskii A. M., “Problema Borsuka i khromaticheskie chisla metricheskikh prostranstv”, Uspekhi mat. nauk, 56:1 (2001), 107–146 | MR | Zbl

[6] Raigorodskii A. M., Khromaticheskie chisla, MTsNMO, M., 2003

[7] Raigorodskii A. M., Lineino-algebraicheskii metod v kombinatorike, MTsNMO, M., 2007

[8] Soifer A., “Khromaticheskoe chislo ploskosti: ego proshloe, nastoyaschee i buduschee”, Matem. prosveschenie, 8, Izd-vo MTsNMO, M., 2004, 185–221

[9] Tarakanov V. E., Kombinatornye zadachi i $(0,1)$-matritsy, Nauka, M., 1985 | MR | Zbl

[10] Brass P., Moser W., Pach J., Research Problems in Discrete Geometry, Springer, Berlin, 2005 | MR

[11] Cantwell K., “Finite Euclidean Ramsey theory”, J. Combin. Theory Ser. A, 73:2 (1996), 273–285 | MR | Zbl

[12] Cibulka J., “On the chromatic number of real and rational spaces”, Geombinatorics, 18:2 (2008), 53–66 | MR

[13] Larman D. G., Rogers C. A., “The realization of distances within sets in Euclidean space”, Mathematika, 19 (1972), 1–24 | DOI | MR | Zbl

[14] Moser L., Moser W., “Solution to problem 10”, Can. Math. Bull., 4 (1961), 187–189

[15] Nechushtan O., “On the space chromatic number”, Discrete Math., 256 (2002), 499–507 | DOI | MR | Zbl

[16] Székely L. A., “Erdős on unit distances and the Szemerédi–Trotter theorems”, Paul Erdős and His Mathematics, Vol. II, Based on Conference (Budapest, Hungary, July 4–11, 1999), Bolyai Soc. Math. Stud., 11, ed. G. Halász, Springer, Berlin, 2002, 649–666 | MR | Zbl