Homotopy types of group lattices
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 5, pp. 103-123.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we study group lattices using the ideas by K. S. Brown and D. Quillen of associating a certain topological space to a partially ordered set. We determine the exact homotopy type for the subgroup lattice of $\operatorname{PSL}(2,7)$, find a connection between different group lattices, and obtain some estimates for the Betty numbers of these lattices using the spectral sequence method.
@article{FPM_2008_14_5_a6,
     author = {I. P. Kramarev and L. V. Lokutsievskiy},
     title = {Homotopy types of group lattices},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {103--123},
     publisher = {mathdoc},
     volume = {14},
     number = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_5_a6/}
}
TY  - JOUR
AU  - I. P. Kramarev
AU  - L. V. Lokutsievskiy
TI  - Homotopy types of group lattices
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2008
SP  - 103
EP  - 123
VL  - 14
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2008_14_5_a6/
LA  - ru
ID  - FPM_2008_14_5_a6
ER  - 
%0 Journal Article
%A I. P. Kramarev
%A L. V. Lokutsievskiy
%T Homotopy types of group lattices
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2008
%P 103-123
%V 14
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2008_14_5_a6/
%G ru
%F FPM_2008_14_5_a6
I. P. Kramarev; L. V. Lokutsievskiy. Homotopy types of group lattices. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 5, pp. 103-123. http://geodesic.mathdoc.fr/item/FPM_2008_14_5_a6/

[1] Fomenko A. T., Fuks D. B., Kurs gomotopicheskoi topologii., Nauka, M., 1989 | MR

[2] Björner A., Walker J. W., “A homotopy complementation formula for partially ordered sets”, European J. Combin., 4 (1983), 11–19 | MR | Zbl

[3] Brown K. S., “The coset poset and probabilistic zeta function of a finite group”, J. Algebra, 225:2 (2000), 989–1012 | DOI | MR | Zbl

[4] Dickson L. E., Linear Groups with an Exposition of the Galois Theory, Dover, New York, 1984

[5] Hall P., “The Eulerian functions of a group”, Quart. J. Math., 7 (1936), 134–151 | DOI | Zbl

[6] Kratzer C., Thevenaz J., “Type d'homotopie des treillis et treillis des sous-groupes d'un groupe fini”, Comment. Math. Helv., 60 (1985), 85–106 | DOI | MR | Zbl

[7] Quillen D., “Homotopy properties of the poset of nontrivial $p$-subgroups of a group”, Adv. Math., 28:2 (1978), 101–128 | DOI | MR | Zbl

[8] Ramras D. A., “Connectivity of the coset poset and the subgroup poset of a group”, J. Group Theory, 8 (2005), 719–746 | DOI | MR | Zbl

[9] Shareshian J., Combinatorial properties of subgroup lattices of finite groups, Ph. D. Thesis, Rutgers University, 1996 | MR

[10] Shareshian J., “On the shellability of the order complex of the subgroup lattice of a finite group”, Trans. Amer. Math. Soc., 353:7 (2001), 2689–2703 | DOI | MR | Zbl

[11] Shareshian J., “Topology of order complexes of intervals in subgroup lattices”, J. Algebra, 268 (2003), 677–686 | DOI | MR | Zbl

[12] Suzuki M., “On a class of doubly transitive groups”, Ann. Math., 75 (1962), 105–145 | DOI | MR | Zbl