Rings on almost completely decomposable Abelian groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 5, pp. 93-101

Voir la notice de l'article provenant de la source Math-Net.Ru

The absolute radical of an Abelian group $G$ is the intersection of radicals of all associative rings with additive group $G$. L. Fuchs formulated the problem on a description of absolute radicals of Abelian groups. For a group from some class of almost completely decomposable Abelian groups the absolute Jacobson radical is described. In the class of almost completely decomposable Abelian groups semisimple groups are described.
@article{FPM_2008_14_5_a5,
     author = {E. I. Kompantseva},
     title = {Rings on almost completely decomposable {Abelian} groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {93--101},
     publisher = {mathdoc},
     volume = {14},
     number = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_5_a5/}
}
TY  - JOUR
AU  - E. I. Kompantseva
TI  - Rings on almost completely decomposable Abelian groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2008
SP  - 93
EP  - 101
VL  - 14
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2008_14_5_a5/
LA  - ru
ID  - FPM_2008_14_5_a5
ER  - 
%0 Journal Article
%A E. I. Kompantseva
%T Rings on almost completely decomposable Abelian groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2008
%P 93-101
%V 14
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2008_14_5_a5/
%G ru
%F FPM_2008_14_5_a5
E. I. Kompantseva. Rings on almost completely decomposable Abelian groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 5, pp. 93-101. http://geodesic.mathdoc.fr/item/FPM_2008_14_5_a5/