@article{FPM_2008_14_5_a11,
author = {D. I. Piontkovski},
title = {On the {Kurosh} problem in varieties of algebras},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {171--184},
year = {2008},
volume = {14},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_5_a11/}
}
D. I. Piontkovski. On the Kurosh problem in varieties of algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 5, pp. 171-184. http://geodesic.mathdoc.fr/item/FPM_2008_14_5_a11/
[1] Golod E. S., “O nil-algebrakh i finitno-approksimiruemykh $p$-gruppakh”, Izv. AN SSSR. Ser. mat., 28:2 (1964), 273–276 | MR | Zbl
[2] Golod E. S., Shafarevich I. R., “O bashne polei klassov”, Izv. AN SSSR. Ser. mat., 28:2 (1964), 261–272 | MR | Zbl
[3] Kurosh A. G., Obschaya algebra, Lektsii 1969–1970 uchebnogo goda, Nauka, M., 1974 | MR | Zbl
[4] Ufnarovskii V. A., “Kombinatornye i asimptoticheskie metody v algebre”, Itogi nauki i tekhn. Ser. Sovr. mat. i ee pril., 57, VINITI, M., 1990, 5–177 | MR
[5] Fresse B., “Koszul duality of operads and homology of partition posets”, Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic K-Theory, Papers from the Int. Conf. on Algebraic Topology (Northwestern Univ., Evanston, IL, USA, March 24–28, 2002), Contemp. Math., 346, ed. P. Goerss, Amer. Math. Soc., Providence, 2004, 115–215 | MR | Zbl
[6] Giambruno A., Zaicev M., Polynomial Identities and Asymptotic Methods, Math. Surveys Monographs, 122, Amer. Math. Soc., Providence, 2005 | MR | Zbl
[7] Ginzburg V., Kapranov M., “Koszul duality for operads”, Duke Math. J., 76:1 (1994), 203–272 ; “Erratum”, 80:1 (1995), 293 | DOI | MR | Zbl | DOI | MR | Zbl
[8] Kanel-Belov A., Rowen L. H., Computational Aspects of Polynomial Identities, Research Notes Math., 9, Peters, Wellesley, 2005 | MR | Zbl
[9] Markl M., Shnider S., Stasheff J., Operads in Algebra, Topology and Physics, Math. Surveys Monographs, 96, Amer. Math. Soc., Providence, 2002 | MR | Zbl
[10] Piontkovski D., “Burnside problem for varieties of algebras and operads” (to appear)