Semifields and their properties
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 5, pp. 3-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

An introduction to the theory of semifields is included in the first part of the article: basic concepts, initial properties, and several methods of investigating semifields are examined. Semifields with a generator, in particular bounded semifields, are considered. Elements of the theory of kernels of semifields are also included in the paper: the structure of principal kernels; the kernel generated by the element $2=1+1$; indecomposable and maximal spectra of semifields; properties of the lattice of kernels of a semifield. A fragment of arp-semiring theory, which is the basis of a new method in semifield theory, is also included in the first part. The second part of the work is devoted to sheaves of semifields and functional representations of semifields. Properties of semifields of sections of semifield sheaves over a zero-dimensional compact are described. Two structural sheaves of semifields, which are the analogs of Pierce and Lambek sheaves for rings, are constructed. These sheaves give isomorphic functional representations of arbitrary, strongly Gelfand, and biregular semifields. As a result, sheaf characterizations of strongly Gelfand, biregular, and Boolean semifields are obtained.
@article{FPM_2008_14_5_a0,
     author = {E. M. Vechtomov and A. V. Cheraneva},
     title = {Semifields and their properties},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {3--54},
     publisher = {mathdoc},
     volume = {14},
     number = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_5_a0/}
}
TY  - JOUR
AU  - E. M. Vechtomov
AU  - A. V. Cheraneva
TI  - Semifields and their properties
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2008
SP  - 3
EP  - 54
VL  - 14
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2008_14_5_a0/
LA  - ru
ID  - FPM_2008_14_5_a0
ER  - 
%0 Journal Article
%A E. M. Vechtomov
%A A. V. Cheraneva
%T Semifields and their properties
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2008
%P 3-54
%V 14
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2008_14_5_a0/
%G ru
%F FPM_2008_14_5_a0
E. M. Vechtomov; A. V. Cheraneva. Semifields and their properties. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 5, pp. 3-54. http://geodesic.mathdoc.fr/item/FPM_2008_14_5_a0/

[1] Birkgof G., Teoriya reshëtok, Nauka, M., 1984 | MR

[2] Bogdanov I. I., “Algebraicheskie rasshireniya polupolei”, Uspekhi mat. nauk, 59:1 (2004), 181–182 | MR | Zbl

[3] Bogdanov I. I., “Ob additivnoi strukture polutel”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2004, no. 1, 48–50 | MR

[4] Bogdanov I. I., Polinomialnye sootnosheniya v polukoltsakh, Dis. $\dots$ kand. fiz.-mat. nauk, MGU, M., 2004

[5] Bredon G., Teoriya puchkov, Nauka, M., 1988 | MR | Zbl

[6] Varankina V. I., “Maksimalnye idealy v polukoltsakh nepreryvnykh funktsii”, Fundament. i prikl. mat., 1:4 (1995), 923–937 | MR | Zbl

[7] Varankina V. I., Maksimalnye idealy i delimost v polukoltsakh nepreryvnykh funktsii, Dis. $\dots$ kand. fiz.-mat. nauk, Vyatskii gos. ped. un-t, Kirov, 1996

[8] Varankina V. I., Vechtomov E. M., Semënova I. A., “Polukoltsa nepreryvnykh neotritsatelnykh funktsii: delimost, idealy, kongruentsii”, Fundament. i prikl. mat., 4:2 (1998), 493–510 | MR | Zbl

[9] Vechtomov E. M., Funktsionalnye predstavleniya kolets, MPGU im. Lenina, M., 1993 | MR

[10] Vechtomov E. M., “O kongruentsiyakh na polutelakh”, Materialy mezhdunarodnoi konferentsii “Problemy algebry i kibernetiki”, posvyaschënnoi pamyati akademika S. A. Chunikhina, Gomelskii gos. un-t, Gomel, 1995, 38–39

[11] Vechtomov E. M., Vvedenie v polukoltsa, Vyatskii gos. ped. un-t, Kirov, 2000

[12] Vechtomov E. M., “Dve obschie strukturnye teoremy o polumodulyakh”, Abelevy gruppy i moduli, 2000, no. 15, 17–23

[13] Vechtomov E. M., “O svoistvakh polutel”, Mat. vestn. pedvuzov i universitetov Volgo-Vyatskogo regiona, 2001, no. 3, 11–20

[14] Vechtomov E. M., “Polukoltsa nepreryvnykh otobrazhenii”, Vestn. VyatGGU, 2004, no. 10, 57–64

[15] Vechtomov E. M., “O trëkh radikalakh dlya polumodulei”, Vestn. VyatGGU. Informatika. Matematika. Yazyk, 2005, no. 13, 148–151

[16] Vechtomov E. M., “Funktsionalnoe predstavlenie polutel”, Mezhdunar. algebraicheskaya konferentsiya, posvyaschënnaya 100-letiyu rozhdeniya A. G. Kurosha, Tezisy dokladov, Mekhaniko-matematicheskii fakultet MGU, M., 2008, 58–60

[17] Vechtomov E. M., Lukin M. A., “Polukoltsa, yavlyayuschiesya ob'edineniem koltsa i polutela”, Uspekhi mat. nauk, 63:6 (2008), 159–160 | MR | Zbl

[18] Vechtomov E. M., Mikhalëv A. V., Chermnykh V. V., “Abelevo- regulyarnye polozhitelnye polukoltsa”, Tr. seminara im. I. G. Petrovskogo, 20, 1997, 282–309 | Zbl

[19] Vechtomov E. M., Ryattel A. V., “Additivno idempotentnye polupolya”, Vestn. VyatGGU, 2002, no. 7, 96–102

[20] Vechtomov E. M., Starostina O. V., “Obobschënnye abelevo-regulyarnye polozhitelnye polukoltsa”, Vestn. Syktyvkarskogo un-ta. Ser. 1. Matematika. Mekhanika. Informatika, 2007, no. 7, 3–16 | MR

[21] Vechtomov E. M., Starostina O. V., “Struktura abelevo-regulyarnykh polozhitelnykh polukolets”, Uspekhi mat. nauk, 62:1 (2007), 199–200 | MR | Zbl

[22] Vechtomov E. M., Cheraneva A. V., “K teorii polutel”, Uspekhi mat. nauk, 63:2 (2008), 161–162 | MR | Zbl

[23] Vechtomov E. M., Cheraneva A. V., “Neprivodimye yadra polutel”, Mat. vestn. pedvuzov i universitetov Volgo-Vyatskogo regiona, 2008, no. 10, 25–31

[24] Vechtomov E. M., Cheraneva A. V., “Puchki polutel nad nulmernym kompaktom”, Mat. vestn. pedvuzov i universitetov Volgo-Vyatskogo regiona, 2008, no. 10, 32–44

[25] Vechtomov E. M., Cheraneva A. V., “Analog puchkovogo predstavleniya Pirsa dlya polutel”, Sovremennaya matematika i matematicheskoe obrazovanie, problemy istorii i filosofii matematiki, Mezhdunar. nauchnaya konferentsiya, Tambov, 2008, 24–27

[26] Vechtomov E. M., Cheraneva A. V., “O svoistvakh polutel”, Mezhdunar. algebraicheskaya konferentsiya, posvyaschënnaya 100-letiyu so dnya rozhdeniya A. G. Kurosha, Tezisy dokladov, Mekhaniko-matematicheskii fakultet MGU, M., 2008, 56–57

[27] Vechtomov E. M., Chuprakov D. V., “Kongruentsii na polukoltsakh nepreryvnykh funktsii i F-prostranstva”, Vestn. Syktyvkarskogo un-ta. Ser. 1. Matematika. Mekhanika. Informatika, 2008, no. 8, 15–26 | MR

[28] Godeman R., Algebraicheskaya topologiya i teoriya puchkov, Izd. inostr. lit., M., 1961 | MR

[29] Grettser G., Obschaya teoriya reshëtok, Mir, M., 1982 | MR

[30] Ilin S. N., “O primenimosti k polukoltsam dvukh teorem teorii kolets i modulei”, Mat. zametki, 83:4 (2008), 536–544 | MR

[31] Kopytov V. M., Reshëtochno uporyadochennye gruppy, Nauka, M., 1984 | MR | Zbl

[32] Lukin M. A., “Diz'yunktnoe polukoltsevoe ob'edinenie koltsa i polutela”, Chebyshëvskii sb., 6:4(16) (2005), 138–148 | MR | Zbl

[33] Lukin M. A., “O polukoltsevykh ob'edineniyakh koltsa i polutela”, Izv. vyssh. uchebn. zaved. Matematika, 2008, no. 12, 76–80 | MR | Zbl

[34] Maslov V. P., Kolokoltsov V. N., Idempotentnyi analiz i ego primenenie v optimalnom upravlenii, Nauka, M., 1994 | MR

[35] Podlevskikh M. N., “Zamknutye kongruentsii na polukoltsakh nepreryvnykh funktsii”, Fundament. i prikl. mat., 5:3 (1999), 947–952 | MR | Zbl

[36] Podlevskikh M. N. Polukoltsa nepreryvnykh funktsiei s topologiei potochechnoi skhodimosti, Dis. $\dots$ kand. fiz.-mat. nauk, Vyatskii gos. ped. un-t, Kirov, 1999

[37] Polin S. V., “Prostye polutela i polupolya”, Sib. mat. zhurn., 15:1 (1974), 90–101 | MR | Zbl

[38] Puninskii G. E., Tuganbaev A. A., Koltsa i moduli, Soyuz, M., 1998 | MR | Zbl

[39] Ryattel A. V., “O lineino uporyadochennykh polutelakh”, Vestn. Vyatskogo gos. ped. un-ta, 2000, no. 3–4, 178–182

[40] Ryattel A. V., Polozhitelno uporyadochennye polutela, Dis. $\dots$ kand. fiz.-mat. nauk, Vyatskii gos. guman. un-t, Kirov, 2002

[41] Semënov A. N., “O podalgebrakh polukolets nepreryvnykh funktsii”, Mat. vestn. pedvuzov Volgo-Vyatskogo regiona, 1998, no. 1, 83–90

[42] Semënov A. N., “O reshëtke kongruentsii polutel”, Vestn. VyatGGU, 2003, no. 9, 92–95 | MR

[43] Semënov A. N., “O stroenii polutel”, Vestn. VyatGGU, 2003, no. 8, 105–107

[44] Semënov A. N., “Poryadki na polupolyakh”, Mat. vestn. pedvuzov i universitetov Volgo-Vyatskogo regiona, 2004, no. 6, 77–92

[45] Semënova I. A., Kongruentsii na polukoltsakh nepreryvnykh funktsii, Dis. $\dots$ kand. fiz.-mat. nauk, Vyatskii gos. ped. un-t, Kirov, 1998

[46] Semënova I. A., “Maksimalnye kongruentsii na polupole nepreryvnykh polozhitelnykh funktsii”, Fundament. i prikl. mat., 6:1 (2000), 305–310 | MR | Zbl

[47] Sergeev S. N., Idempotentnye analogi teorem otdelimosti i obrazuyuschie idempotentnykh polumodulei, Avtoreferat dis. $\dots$ kand. fiz.-mat. nauk, MGU, M., 2008

[48] Starostina O. V., “Stroenie abelevo-regulyarnykh polozhitelnykh polukolets”, Chebyshëvskii sb., 6:4(16) (2005), 142–151 | MR

[49] Starostina O. V., Abelevo-regulyarnye polozhitelnye polukoltsa, Dis. $\dots$ kand. fiz.-mat. nauk, Vyatskii gos. guman. un-t, Kirov, 2007

[50] Starostina O. V., “Funktsionalnye predstavleniya abelevo-regulyarnykh polozhitelnykh polukolets”, Mat. vestn. pedvuzov i universitetov Volgo-Vyatskogo regiona, 2007, no. 9, 70–75

[51] Cheraneva A. V., “O kongruentsiyakh na polutelakh”, Chebyshëvskii sb., 6:4(16) (2005), 164–171 | MR | Zbl

[52] Cheraneva A. V., “O sokratimykh kongruentsiyakh na polutelakh”, Vestn. VyatGGU. Informatika. Matematika. Yazyk, 2005, no. 3, 160–163

[53] Cheraneva A. V., “O glavnom yadre, porozhdënnom 2”, Mat. vestn. pedvuzov i universitetov Volgo-Vyatskogo regiona, 2006, no. 8, 120–125

[54] Cheraneva A. V., “O distributivnosti polutel”, Sovremennye metody fiziko-matematicheskikh nauk, Tr. mezhdunar. konf. T. 1, Orlovskii gos. un-t, Orel, 2006, 198–200

[55] Cheraneva A. V., “Koltso raznostei polutela”, Vestn. VyatGGU. Informatika. Matematika. Yazyk, 2007, no. 4, 205–207

[56] Cheraneva A. V., Yadra i puchki polutel, Dis. $\dots$ kand. fiz.-mat. nauk, VyatGGU, Kirov, 2008

[57] Chermnykh V. V., “O polnote puchkovykh predstavlenii polukolets”, Fundament. i prikl. mat., 2:1 (1996), 267–277 | MR | Zbl

[58] Chermnykh V. V., Polukoltsa, Vyatskii gos. ped. un-t, Kirov, 1997

[59] Chermnykh V. V., “Polukoltsa sechenii puchkov”, Vestn. VyatGGU. Informatika. Matematika. Yazyk, 2005, no. 13, 151–158

[60] Chermnykh V. V., Funktsionalnye predstavleniya polukolets i polumodulei, Dis. $\dots$ dokt. fiz.-mat. nauk, VyatGGU, Kirov, 2007

[61] Chuprakov D. V., “O glavnykh yadrakh polupolei nepreryvnykh funktsii”, Sovremennaya matematika i matematicheskoe obrazovanie, problemy istorii i filosofii matematiki, Mezhdunar. nauch. konf., Tambovskii gos. un-t, Tambov, 2008, 33–36

[62] Shirokov D. V., “Usloviya distributivnosti reshëtki kongruentsii polupolya nepreryvnykh polozhitelnykh funktsii”, Vestn. VyatGGU, 2003, no. 8, 137–140

[63] Shirokov D. V., Idealy v polukoltsakh nepreryvnykh funktsii, Dis. $\dots$ kand. fiz.-mat. nauk, VyatGGU, Kirov, 2005

[64] Shpiz G. B., “Reshenie algebraicheskikh uravnenii v idempotentnykh polupolyakh”, Uspekhi mat. nauk, 55:5 (2000), 185–186 | MR | Zbl

[65] Engelking R., Obschaya topologiya, Mir, M., 1986 | MR

[66] M. P. Fourman, C. J. Mulvey, D. S. Scott (eds.), Applications of Sheaves, Proc. of Research Symp. on Applications of Sheaf Theory to Logic, Algebra and Analysis (Durham, July 9–21, 1977), Lect. Notes Math., 753, Springer, 1979 | MR | Zbl

[67] Artamonova I. I., Chermnykh V. V., Mikhalev A. V., Varankina V. I., Vechtomov E. M., “Semirings: sheaves and continuous functions”, Semigroups with Applications, Including Semigroup Rings, Saint-Petersburg, 1999, 23–58 | Zbl

[68] Dauns J., Hofmann K. H., “The represention of biregular rings by sheaves”, Math. Z., 91:2 (1966), 103–123 | DOI | MR | Zbl

[69] Davey B. A., “Sheaf spaces and sheaves of universal algebras”, Math. Z., 134:4 (1973), 275–290 | DOI | MR | Zbl

[70] Dedekind R., “Über die Theorie ganzen algebraischen Zahlen”, Suppl. XI to, G. Le-jeune Dirichlet, Vorlesungen über Zahlentheorie, 4 Anfl., Braunschweig, 1894 | Zbl

[71] Gillman L., Jerison M., Rings of continuous functions, Springer, New York, 1976 | MR | Zbl

[72] Glazek K. A., Guide to the Literature on Semirings and Their Applications in Mathematics and Information Sciences, Kluwer Academic, Dordrecht, 2002 | MR | Zbl

[73] Golan J. S., The Theory of Semirings with Applications in Mathematics and Theoretical Computer Science, Pitman Monographs and Surveys in Pure and Appl. Math., 54, Pitman, 1992 | MR | Zbl

[74] Golan J. S., Semirings and Their Applications, Kluwer Academic, Dordrecht, 1999 | MR

[75] Hebisch U., Weinert H. J., “Semirings and semifields”, Handbook of Algebra, Vol. I, ed. M. Hazewinkel, North-Holland, Amsterdam, 1996, 425–462 | MR | Zbl

[76] Hebisch U., Weinert H. J., Semirings. Algebraic Theory and Applications in Computer Science, World Scientific, Singapore, 1998 | MR | Zbl

[77] Hilbert D., “Über den Zahlbergriff”, Jahresber. Deutsch. Math. Verein., 8 (1899), 180–184

[78] Hutchins H. C., “Division semirings with $1+1=1$”, Semigroup Forum, 22:2 (1981), 181–188 | DOI | MR | Zbl

[79] Hutchins H. C., Weinert H. J., “Homomorphisms and kernel of semifields”, Period. Mat., 21:2 (1990), 113–152 | DOI | MR | Zbl

[80] Lambek J., “On representation of modules by sheaves of factor modules”, Can. Math. Bull., 14:3 (1971), 359–368 | DOI | MR | Zbl

[81] Maslov V. P., Samborskii S. N., Idempotent Analysis, Adv. Sov. Math., 13, Amer. Math. Soc., Providence, 1992 | MR

[82] Mitchell S., Sinutoke P., “The theory of semifields”, Kyungpook Math. J., 22 (1982), 325–347 | MR

[83] Pierce R. S., Modules over Commutative Regular Rings, Mem. Amer. Math. Soc., 70, Amer. Math. Soc., Providence, 1967 | MR | Zbl

[84] Silcock H. L., “Generalized products and the lattice of normal subgroups of a group”, Algebra Universalis, 7 (1977), 361–372 | DOI | MR | Zbl

[85] Vandiver H. S., “Note on a simple type of algebra in which cancellation law of addition does not hold”, Bull. Amer. Math. Soc., 40 (1934), 914–920 | DOI | MR | Zbl

[86] Vechtomov E. M., “Rings and sheaves”, J. Math. Sci., 74:1 (1995), 749–798 | DOI | MR | Zbl

[87] Weinert H. J., “Über Halbring und Halbkörper. I”, Acta Math. Acad. Sci. Hungar., 13:3–4 (1962), 365–378 | DOI | MR

[88] Weinert H. J., “Über Halbring und Halbkörper. II”, Acta Math. Acad. Sci. Hungar., 14:1–2 (1963), 209–227 | DOI | MR | Zbl

[89] Weinert H. J., “Über Halbring und Halbkörper. III”, Acta Math. Acad. Sci. Hungar., 15:1–2 (1964), 177–194 | DOI | MR | Zbl

[90] Weinert H. J., “Ein Struktursatz für idempotente Halbkörper”, Acta Math. Acad. Sci. Hungar., 15:3–4 (1964), 289–295 | DOI | MR | Zbl