Jacobi's bound for systems of algebraic differential equations
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 4, pp. 151-166.

Voir la notice de l'article provenant de la source Math-Net.Ru

This review paper is devoted to the Jacobi bound for systems of partial differential polynomials. We prove the conjecture for the system of $n$ partial differential equations in $n$ differential variables which are independent over a prime differential ideal $\mathfrak p$. On the one hand, this generalizes our result about the Jacobi bound for ordinary differential polynomials independent over a prime differential ideal $\mathfrak p$ and, on the other hand, the result by Tomasovic, who proved the Jacobi bound for linear partial differential polynomials.
@article{FPM_2008_14_4_a9,
     author = {M. V. Kondrat'eva and A. V. Mikhalev and E. V. Pankratiev},
     title = {Jacobi's bound for systems of algebraic differential equations},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {151--166},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a9/}
}
TY  - JOUR
AU  - M. V. Kondrat'eva
AU  - A. V. Mikhalev
AU  - E. V. Pankratiev
TI  - Jacobi's bound for systems of algebraic differential equations
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2008
SP  - 151
EP  - 166
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a9/
LA  - ru
ID  - FPM_2008_14_4_a9
ER  - 
%0 Journal Article
%A M. V. Kondrat'eva
%A A. V. Mikhalev
%A E. V. Pankratiev
%T Jacobi's bound for systems of algebraic differential equations
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2008
%P 151-166
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a9/
%G ru
%F FPM_2008_14_4_a9
M. V. Kondrat'eva; A. V. Mikhalev; E. V. Pankratiev. Jacobi's bound for systems of algebraic differential equations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 4, pp. 151-166. http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a9/

[1] Kondrateva M. V., Mikhalëv A. V., Pankratev E. V., “O granitse Yakobi dlya sistem differentsialnykh uravnenii”, Algebra, Izd-vo Mosk. un-ta, M., 1982, 79–85 | MR

[2] Mink Kh., Permanenty, Mir, M., 1982 | MR

[3] Cohn R. M., “Order and dimension”, Proc. Amer. Math. Soc., 87:1 (1983), 1–6 | DOI | MR | Zbl

[4] Jacobi C. G. J., “De investigando ordine systematis aequationum differentialum vulgarium cujuscunque”, J. Reine Angew. Math., 64:4 (1865), 297–320 ; Jacobi C. G. J., Gesammelte Werke, Vol. 5, Georg Reimer, Berlin, 1890, 191–216 | DOI | Zbl

[5] Johnson J., “Differential dimension polynomials and a fundamental theorem on differential modules”, Amer. J. Math., 91 (1969), 239–248 | DOI | MR | Zbl

[6] Johnson J., “Kähler differentials and differential algebra”, Ann. Math., 89 (1969), 92–98 | DOI | MR | Zbl

[7] Johnson J., “Systems of $n$ partial differential equations in $n$ unknown functions, conjecture of M. Janet”, Trans. Amer. Math. Soc., 212 (1978), 229–334 | MR

[8] Kolchin E. R., “Some problems in differential algebra”, Trudy mezhdunarodnogo kongressa matematikov, Mir, M., 1966, 269–276 | MR

[9] Kolchin E. R., Differential algebra and algebraic groups, Academic Press, London, 1973 | MR | Zbl

[10] Kondratieva M. V., Levin A. B., Mikhalev A. V., Pankratiev E. V., Differential and difference dimension polynomials, Kluwer Academic, 1999 | MR | Zbl

[11] Kondratieva M. V., Mikhalev A. V., Pankratiev E. V., “Jacobi's bound for independent systems of algebraic partial differential equations”, Appl. Algebra Engrg. Comm. Comput., 2009 (to appear) | MR

[12] Lando B., “Jacobi's bound for the order of systems of first order differential equations”, Trans. Amer. Math. Soc., 152:1 (1970), 119–135 | DOI | MR | Zbl

[13] Ritt J. F., “Jacobi's problem on the order of systems of differential equations”, Ann. Math., 36 (1935), 303–312 | DOI | MR | Zbl

[14] Ritt J. F., Differential Algebra, Coll. Publ., 33, Amer. Math. Soc., New York, 1950 | MR | Zbl

[15] Tomasovic T. S., A generalized Jacobi conjecture for arbitrary systems of algebraic differential equations, Ph. D. Thesis, Columbia University, 1976