Jacobi's bound for systems of algebraic differential equations
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 4, pp. 151-166

Voir la notice de l'article provenant de la source Math-Net.Ru

This review paper is devoted to the Jacobi bound for systems of partial differential polynomials. We prove the conjecture for the system of $n$ partial differential equations in $n$ differential variables which are independent over a prime differential ideal $\mathfrak p$. On the one hand, this generalizes our result about the Jacobi bound for ordinary differential polynomials independent over a prime differential ideal $\mathfrak p$ and, on the other hand, the result by Tomasovic, who proved the Jacobi bound for linear partial differential polynomials.
@article{FPM_2008_14_4_a9,
     author = {M. V. Kondrat'eva and A. V. Mikhalev and E. V. Pankratiev},
     title = {Jacobi's bound for systems of algebraic differential equations},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {151--166},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a9/}
}
TY  - JOUR
AU  - M. V. Kondrat'eva
AU  - A. V. Mikhalev
AU  - E. V. Pankratiev
TI  - Jacobi's bound for systems of algebraic differential equations
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2008
SP  - 151
EP  - 166
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a9/
LA  - ru
ID  - FPM_2008_14_4_a9
ER  - 
%0 Journal Article
%A M. V. Kondrat'eva
%A A. V. Mikhalev
%A E. V. Pankratiev
%T Jacobi's bound for systems of algebraic differential equations
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2008
%P 151-166
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a9/
%G ru
%F FPM_2008_14_4_a9
M. V. Kondrat'eva; A. V. Mikhalev; E. V. Pankratiev. Jacobi's bound for systems of algebraic differential equations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 4, pp. 151-166. http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a9/