Parallelization of matrix algorithms for Gr\"obner basis computation
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 4, pp. 35-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

Sequential and parallel implementations of the F4 algorithm for computing Gröbner bases of polynomial ideals are discussed.
@article{FPM_2008_14_4_a2,
     author = {D. E. Aleksandrov and V. V. Galkin and A. I. Zobnin and M. V. Levin},
     title = {Parallelization of matrix algorithms for {Gr\"obner} basis computation},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {35--64},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a2/}
}
TY  - JOUR
AU  - D. E. Aleksandrov
AU  - V. V. Galkin
AU  - A. I. Zobnin
AU  - M. V. Levin
TI  - Parallelization of matrix algorithms for Gr\"obner basis computation
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2008
SP  - 35
EP  - 64
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a2/
LA  - ru
ID  - FPM_2008_14_4_a2
ER  - 
%0 Journal Article
%A D. E. Aleksandrov
%A V. V. Galkin
%A A. I. Zobnin
%A M. V. Levin
%T Parallelization of matrix algorithms for Gr\"obner basis computation
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2008
%P 35-64
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a2/
%G ru
%F FPM_2008_14_4_a2
D. E. Aleksandrov; V. V. Galkin; A. I. Zobnin; M. V. Levin. Parallelization of matrix algorithms for Gr\"obner basis computation. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 4, pp. 35-64. http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a2/

[1] Gerdt V. P., Zinin M. V., “Involyutivnyi metod vychisleniya bazisov Grëbnera nad $F_2$”, Programmirovanie, 2008, no. 4, 8–24 | MR | Zbl

[2] Gerdt V. P., Yanovich D. A., Blinkov Yu. A., “Bystryi poisk delitelya Zhane”, Programmirovanie, 2001, no. 1, 32–36 | MR | Zbl

[3] Koks D., Littl Dzh., O'Shi D., Idealy, mnogoobraziya i algoritmy, Mir, M., 2000

[4] Mityunin V. A., Pankratev E. V., “Parallelnye algoritmy postroeniya bazisov Grëbnera”, Sovrem. mat. i eë pril., 30 (2005), 46–64 | MR

[5] Pankratev E. V., Elementy kompyuternoi algebry, Internet-universitet informatsionnykh tekhnologii, M., 2007

[6] Yanovich D. A., “Otsenka effektivnosti raspredelënnykh vychislenii bazisov Grëbnera i involyutivnykh bazisov”, Programmirovanie, 2008, no. 4, 32–40 | MR | Zbl

[7] Attardi G., Traverso C., “Strategy-accurate parallel Buchberger algorithm”, J. Symb. Comput., 21:4–6 (1996), 411–425 | DOI | MR | Zbl

[8] Becker T., Weispfenning V., Gröbner Bases. A Computational Approach to Commutative Algebra, Grad. Texts Math., 141, Springer, New York, 1993 | MR | Zbl

[9] Buchberger B., “Gröbner bases: An algorithmic method in polynomial ideal theory”, Multidimensional Systems Theory, Reidel, 1985, 184–232 | Zbl

[10] Faugère J.-C., “Parallelization of Gröbner bases”, Parallel and Symbolic Computation, Lect. Notes Comput., 5, World Scientific, 1994, 124–132 | MR

[11] Faugère J.-C., “A new efficient algorithm for computing Gröbner bases (F4)”, J. Pure Appl. Algebra, 139:1–3 (1999), 61–88 | DOI | MR | Zbl

[12] Faugère J.-C., “A new efficient algorithm for computing Gröbner bases without reduction to zero (F5)”, Proc. of the 2002 Int. Symp. on Symbolic and Algebraic Computation, ISSAC, ACM Press, 2002, 75–83 | MR | Zbl

[13] Gebauer R., Möller H. M., “On an installation of Buchberger's algorithm”, J. Symb. Comput., 6 (1988), 275–286 | DOI | MR | Zbl

[14] Gerdt V. P., “Gröbner bases and involutive methods for algebraic and differential equations”, Math. Comput. Modelling, 25:8/9 (1997), 75–90 | DOI | MR | Zbl

[15] Gerdt V. P., Yanovich D. A., “Parallel computation of involutive and Gröbner bases”, Proc. of CASC 2003, eds. V. G. Ganza, E. W. Mayr, E. V. Vorozhtsov, Institute of Informatics, Technical University of Munich, Garching, 2004, 185–194

[16] Kipnis A., Shamir A., “Cryptanalysis of the HFE public key cryptosystem by relinearization”, Advances in Cryptology, Crypto' 99, Lect. Notes Comput. Sci., 1666, Springer, 1999, 19–30 | MR | Zbl

[17] Möller H. M., Mora T., Traverso C., “Gröbner bases computation using syzygies”, Int. Symp. on Symbolic and Algebraic Computation 92, ISSAC 92 (Berkeley, CA, USA, July 27–29, 1992), ed. P. S. Wang, ACM Press, Baltimore, 1992, 320–328 | Zbl

[18] Reeves A. A., “A parallel implementation of Buchberger's algorithm over $\mathbb Z_p$ for $p=31991$”, J. Symb. Comput., 26:2 (1998), 229–244 | DOI | MR | Zbl

[19] Roune B. H., The F4 algorithm: Speeding up Gröbner basis computation using linear algebra, , 2005 http:// www.broune.com/papers/f4.pdf

[20] Segers A. J. M., Algebraic attacks from a Gröbner bases perspective, MSc Thesis, Technische Universiteit Eindhoven, 2004

[21] Stegers T., Faugere's F5 algorithm revisited, Diplom Thesis , Technische Universität Darmstadt, 2005 http:// wwwcsif.cs.ucdavis.edu/~stegers/diplom_stegers.pdf

[22] Trân Q.-N., “Parallel computation and Gröbner bases: An application for converting bases with the Gröbner walk”, Gröbner Bases and Applications, eds. B. Buchberger, F. Winkler, Cambridge Univ. Press, 1998, 519–531 | MR

[23] Yanovich D. A., “Parallelization of an algorithm for computation of involutive Janet bases”, Program. Comput. Software, 28:2 (2002), 66–69 | DOI | MR | Zbl