Bezout modules and rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 4, pp. 227-229
Cet article a éte moissonné depuis la source Math-Net.Ru
For any ring $A$, there exist a Bezout ring $R$ and an idempotent $e\in R$ with $A\cong eRe$. Every module over any ring is a direct summand of an endo-Bezout module. Over any ring, every free module of infinite rank is an endo-Bezout module.
@article{FPM_2008_14_4_a14,
author = {A. A. Tuganbaev},
title = {Bezout modules and rings},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {227--229},
year = {2008},
volume = {14},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a14/}
}
A. A. Tuganbaev. Bezout modules and rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 4, pp. 227-229. http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a14/