Bezout modules and rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 4, pp. 227-229.

Voir la notice de l'article provenant de la source Math-Net.Ru

For any ring $A$, there exist a Bezout ring $R$ and an idempotent $e\in R$ with $A\cong eRe$. Every module over any ring is a direct summand of an endo-Bezout module. Over any ring, every free module of infinite rank is an endo-Bezout module.
@article{FPM_2008_14_4_a14,
     author = {A. A. Tuganbaev},
     title = {Bezout modules and rings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {227--229},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a14/}
}
TY  - JOUR
AU  - A. A. Tuganbaev
TI  - Bezout modules and rings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2008
SP  - 227
EP  - 229
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a14/
LA  - ru
ID  - FPM_2008_14_4_a14
ER  - 
%0 Journal Article
%A A. A. Tuganbaev
%T Bezout modules and rings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2008
%P 227-229
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a14/
%G ru
%F FPM_2008_14_4_a14
A. A. Tuganbaev. Bezout modules and rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 4, pp. 227-229. http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a14/