Pseudogeometries with clusters and an example of a recursive $[4,2,3]_{42}$-code
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 4, pp. 181-192
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In 1998, E. Couselo, S. Gonzalez, V. Markov, and A. Nechaev defined the recursive codes and obtained some results that allowed one to conjecture the existence of recursive MDS-codes of dimension 2 and length 4 over any finite alphabet of cardinality $q\notin\{2,6\}$. This conjecture remained open only for $q\in\{14,18,26,42\}$. It is shown in this paper that there exist such codes for $q=42$. We used a new construction, that of pseudogeometry with clusters.
@article{FPM_2008_14_4_a11,
     author = {V. T. Markov and A. A. Nechaev and S. Skazhenik and E. O. Tveritinov},
     title = {Pseudogeometries with clusters and an example of a~recursive $[4,2,3]_{42}$-code},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {181--192},
     year = {2008},
     volume = {14},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a11/}
}
TY  - JOUR
AU  - V. T. Markov
AU  - A. A. Nechaev
AU  - S. Skazhenik
AU  - E. O. Tveritinov
TI  - Pseudogeometries with clusters and an example of a recursive $[4,2,3]_{42}$-code
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2008
SP  - 181
EP  - 192
VL  - 14
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a11/
LA  - ru
ID  - FPM_2008_14_4_a11
ER  - 
%0 Journal Article
%A V. T. Markov
%A A. A. Nechaev
%A S. Skazhenik
%A E. O. Tveritinov
%T Pseudogeometries with clusters and an example of a recursive $[4,2,3]_{42}$-code
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2008
%P 181-192
%V 14
%N 4
%U http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a11/
%G ru
%F FPM_2008_14_4_a11
V. T. Markov; A. A. Nechaev; S. Skazhenik; E. O. Tveritinov. Pseudogeometries with clusters and an example of a recursive $[4,2,3]_{42}$-code. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 4, pp. 181-192. http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a11/

[1] Gonsales S., Kouselo E., Markov V. T., Nechaev A. A., “Rekursivnye MDR-kody i rekursivno differentsiruemye kvazigruppy”, Diskret. mat., 10:2 (1998), 3–29 | MR | Zbl

[2] Gonsales S., Kouselo E., Markov V., Nechaev A., “Parametry rekursivnykh MDR-kodov”, Diskret. mat., 12:4 (2000), 3–24 | MR | Zbl

[3] MakVilyams F. Dzh., Sloen N. Dzh. A., Teoriya kodov, ispravlyayuschikh oshibki, Svyaz, M., 1979

[4] Kholl M., Kombinatorika, Mir, M., 1970 | MR

[5] Tarry G., “Le problème de 36 officiers. 1”, C. R. Assoc. Fr. Av. Sci., 1900, 122–123; “Le problème de 36 officiers. 2”, 1901, 170–203