Dimension polynomials of intermediate differential fields and the strength of a~system of differential equations with group action
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 4, pp. 167-180
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $K$ be a differential field of zero characteristic with a basic set of derivations $\Delta=\{\delta_1,\dots,\delta_m\}$ and let $\Theta$ denote the free commutative semigroup of all elements of the form $\theta=\delta_1^{k_1}\dots\delta_m^{k_m}$ where $k_i\in\mathbb N$ ($1\leq i\leq m$). Let the order of such an element be defined as $\operatorname{ord}\theta=\sum_{i=1}^mk_i$, and for any $r\in\mathbb N$, let $\Theta(r) = \{\theta\in\Theta\mid\operatorname{ord}\theta\leq r\}$. Let $L=K\langle\eta_1,\dots,\eta_s\rangle$ be a differential field extension of $K$ generated by a finite set $\eta=\{\eta_1,\dots,\eta_s\}$ and let $F$ be an intermediate differential field of the extension $L/K$. Furthermore, for any $r\in\mathbb N$, let $L_r=K\Bigl(\bigcup_{i=1}^s\Theta(r)\eta_i\Bigr)$ and $F_r=L_r\cap F$.
We prove the existence and describe some properties of a polynomial $\varphi_{K,F,\eta}(t)\in\mathbb Q[t]$ such that $\varphi_{K,F,\eta}(r)=\operatorname{trdeg}_KF_r$ for all sufficiently large $r\in\mathbb N$. This result implies the existence of a dimension polynomial that describes the strength of a system of differential equations with group action in the sense of A. Einstein. We shall also present a more general result, a theorem on a multivariate dimension polynomial associated with an intermediate differential field $F$ and partitions of the basic set $\Delta$.
@article{FPM_2008_14_4_a10,
author = {A. B. Levin},
title = {Dimension polynomials of intermediate differential fields and the strength of a~system of differential equations with group action},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {167--180},
publisher = {mathdoc},
volume = {14},
number = {4},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a10/}
}
TY - JOUR AU - A. B. Levin TI - Dimension polynomials of intermediate differential fields and the strength of a~system of differential equations with group action JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2008 SP - 167 EP - 180 VL - 14 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a10/ LA - ru ID - FPM_2008_14_4_a10 ER -
%0 Journal Article %A A. B. Levin %T Dimension polynomials of intermediate differential fields and the strength of a~system of differential equations with group action %J Fundamentalʹnaâ i prikladnaâ matematika %D 2008 %P 167-180 %V 14 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a10/ %G ru %F FPM_2008_14_4_a10
A. B. Levin. Dimension polynomials of intermediate differential fields and the strength of a~system of differential equations with group action. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 4, pp. 167-180. http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a10/