Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2008_14_4_a10, author = {A. B. Levin}, title = {Dimension polynomials of intermediate differential fields and the strength of a~system of differential equations with group action}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {167--180}, publisher = {mathdoc}, volume = {14}, number = {4}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a10/} }
TY - JOUR AU - A. B. Levin TI - Dimension polynomials of intermediate differential fields and the strength of a~system of differential equations with group action JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2008 SP - 167 EP - 180 VL - 14 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a10/ LA - ru ID - FPM_2008_14_4_a10 ER -
%0 Journal Article %A A. B. Levin %T Dimension polynomials of intermediate differential fields and the strength of a~system of differential equations with group action %J Fundamentalʹnaâ i prikladnaâ matematika %D 2008 %P 167-180 %V 14 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a10/ %G ru %F FPM_2008_14_4_a10
A. B. Levin. Dimension polynomials of intermediate differential fields and the strength of a~system of differential equations with group action. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 4, pp. 167-180. http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a10/
[1] Kondrateva M. V., Pankratev E. V., “Algoritmy vychisleniya kharakteristicheskikh mnogochlenov Gilberta”, Pakety prikladnykh programm. Analiticheskie preobrazovaniya, Nauka, M., 1988, 129–146
[2] Mikhalëv A. V., Pankratev E. V., “Differentsialnyi razmernostnyi mnogochlen sistemy differentsialnykh uravnenii”, Algebra, Sb. statei, Izd-vo Mosk. un-ta, M., 1980, 57–67
[3] Mikhalëv A. V., Pankratev E. V., “Differentsialnaya i raznostnaya algebra”, Itogi nauki i tekhn. Ser. Algebra. Topologiya. Geometriya, 25, VINITI, M., 1987, 67–139 | MR
[4] Mikhalëv A. V., Pankratev E. V., Kompyuternaya algebra. Vychisleniya v differentsialnoi i raznostnoi algebre, Mosk. gos. un-t, M., 1989
[5] Pankratev E. V., “Standartnye bazisy v differentsialnoi algebre”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2003, no. 3, 48–56 | MR
[6] Pankratev E. V., Elementy kompyuternoi algebry, Internet-universitet informatsionnykh tekhnologii, M., 2007
[7] Einstein A., “Appendix II: Generalization of gravitation theory”, The Meaning of Relativity, Princeton, 1953, 133–165 | MR
[8] Johnson J., “Differential dimension polynomials and a fundamental theorem on differential modules”, Amer. J. Math., 91 (1969), 239–248 | DOI | MR | Zbl
[9] Kolchin E. R., “The notion of dimension in the theory of algebraic differential equations”, Bull. Amer. Math. Soc., 70 (1964), 570–573 | DOI | MR | Zbl
[10] Kondratieva M. V., Levin A. B., Mikhalev A. V., Pankratiev E. V., Differential and Difference Dimension Polynomials, Kluwer Academic, 1999 | MR | Zbl
[11] Levin A. B., “Gröbner bases with respect to several orderings and multivariable dimension polynomials”, J. Symbolic Comput., 42 (2007), 561–578 | DOI | MR | Zbl
[12] Pankrat'ev E. V., “Computations in differential and difference modules”, Acta Appl. Math., 16:2 (1989), 167–189 | DOI | MR
[13] Pankratiev E. V., “Constructive methods in differential algebra”, Proc. First Int. Conf. “Mathematical Algorithms”, Nizhny Novgorod, 1995, 90–105
[14] Pankratiev E. V., “Some approaches to construction of standard bases in commutative and differential algebra”, Proc. Fifth Int. Workshop on Computer Algebra in Scientific Computing, CASC–2002, eds. V. G. Ganzha, E. W. Mayr, E. V. Vorozhtsov, Technische Univ. München, Garching, 2002, 265–268