Dimension polynomials of intermediate differential fields and the strength of a~system of differential equations with group action
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 4, pp. 167-180.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $K$ be a differential field of zero characteristic with a basic set of derivations $\Delta=\{\delta_1,\dots,\delta_m\}$ and let $\Theta$ denote the free commutative semigroup of all elements of the form $\theta=\delta_1^{k_1}\dots\delta_m^{k_m}$ where $k_i\in\mathbb N$ ($1\leq i\leq m$). Let the order of such an element be defined as $\operatorname{ord}\theta=\sum_{i=1}^mk_i$, and for any $r\in\mathbb N$, let $\Theta(r) = \{\theta\in\Theta\mid\operatorname{ord}\theta\leq r\}$. Let $L=K\langle\eta_1,\dots,\eta_s\rangle$ be a differential field extension of $K$ generated by a finite set $\eta=\{\eta_1,\dots,\eta_s\}$ and let $F$ be an intermediate differential field of the extension $L/K$. Furthermore, for any $r\in\mathbb N$, let $L_r=K\Bigl(\bigcup_{i=1}^s\Theta(r)\eta_i\Bigr)$ and $F_r=L_r\cap F$. We prove the existence and describe some properties of a polynomial $\varphi_{K,F,\eta}(t)\in\mathbb Q[t]$ such that $\varphi_{K,F,\eta}(r)=\operatorname{trdeg}_KF_r$ for all sufficiently large $r\in\mathbb N$. This result implies the existence of a dimension polynomial that describes the strength of a system of differential equations with group action in the sense of A. Einstein. We shall also present a more general result, a theorem on a multivariate dimension polynomial associated with an intermediate differential field $F$ and partitions of the basic set $\Delta$.
@article{FPM_2008_14_4_a10,
     author = {A. B. Levin},
     title = {Dimension polynomials of intermediate differential fields and the strength of a~system of differential equations with group action},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {167--180},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a10/}
}
TY  - JOUR
AU  - A. B. Levin
TI  - Dimension polynomials of intermediate differential fields and the strength of a~system of differential equations with group action
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2008
SP  - 167
EP  - 180
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a10/
LA  - ru
ID  - FPM_2008_14_4_a10
ER  - 
%0 Journal Article
%A A. B. Levin
%T Dimension polynomials of intermediate differential fields and the strength of a~system of differential equations with group action
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2008
%P 167-180
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a10/
%G ru
%F FPM_2008_14_4_a10
A. B. Levin. Dimension polynomials of intermediate differential fields and the strength of a~system of differential equations with group action. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 4, pp. 167-180. http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a10/

[1] Kondrateva M. V., Pankratev E. V., “Algoritmy vychisleniya kharakteristicheskikh mnogochlenov Gilberta”, Pakety prikladnykh programm. Analiticheskie preobrazovaniya, Nauka, M., 1988, 129–146

[2] Mikhalëv A. V., Pankratev E. V., “Differentsialnyi razmernostnyi mnogochlen sistemy differentsialnykh uravnenii”, Algebra, Sb. statei, Izd-vo Mosk. un-ta, M., 1980, 57–67

[3] Mikhalëv A. V., Pankratev E. V., “Differentsialnaya i raznostnaya algebra”, Itogi nauki i tekhn. Ser. Algebra. Topologiya. Geometriya, 25, VINITI, M., 1987, 67–139 | MR

[4] Mikhalëv A. V., Pankratev E. V., Kompyuternaya algebra. Vychisleniya v differentsialnoi i raznostnoi algebre, Mosk. gos. un-t, M., 1989

[5] Pankratev E. V., “Standartnye bazisy v differentsialnoi algebre”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2003, no. 3, 48–56 | MR

[6] Pankratev E. V., Elementy kompyuternoi algebry, Internet-universitet informatsionnykh tekhnologii, M., 2007

[7] Einstein A., “Appendix II: Generalization of gravitation theory”, The Meaning of Relativity, Princeton, 1953, 133–165 | MR

[8] Johnson J., “Differential dimension polynomials and a fundamental theorem on differential modules”, Amer. J. Math., 91 (1969), 239–248 | DOI | MR | Zbl

[9] Kolchin E. R., “The notion of dimension in the theory of algebraic differential equations”, Bull. Amer. Math. Soc., 70 (1964), 570–573 | DOI | MR | Zbl

[10] Kondratieva M. V., Levin A. B., Mikhalev A. V., Pankratiev E. V., Differential and Difference Dimension Polynomials, Kluwer Academic, 1999 | MR | Zbl

[11] Levin A. B., “Gröbner bases with respect to several orderings and multivariable dimension polynomials”, J. Symbolic Comput., 42 (2007), 561–578 | DOI | MR | Zbl

[12] Pankrat'ev E. V., “Computations in differential and difference modules”, Acta Appl. Math., 16:2 (1989), 167–189 | DOI | MR

[13] Pankratiev E. V., “Constructive methods in differential algebra”, Proc. First Int. Conf. “Mathematical Algorithms”, Nizhny Novgorod, 1995, 90–105

[14] Pankratiev E. V., “Some approaches to construction of standard bases in commutative and differential algebra”, Proc. Fifth Int. Workshop on Computer Algebra in Scientific Computing, CASC–2002, eds. V. G. Ganzha, E. W. Mayr, E. V. Vorozhtsov, Technische Univ. München, Garching, 2002, 265–268