Rings over which all modules are $I_0$-modules.~II
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 2, pp. 3-12

Voir la notice de l'article provenant de la source Math-Net.Ru

All right $R$-modules are $I_0$-modules if and only if either $R$ is a right SV-ring or $R/I^{(2)}(R)$ is an Artinian serial ring such that the square of the Jacobson radical of $R/I^{(2)}(R)$ is equal to zero.
@article{FPM_2008_14_2_a0,
     author = {A. N. Abyzov and A. A. Tuganbaev},
     title = {Rings over which all modules are $I_0${-modules.~II}},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {3--12},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_2_a0/}
}
TY  - JOUR
AU  - A. N. Abyzov
AU  - A. A. Tuganbaev
TI  - Rings over which all modules are $I_0$-modules.~II
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2008
SP  - 3
EP  - 12
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2008_14_2_a0/
LA  - ru
ID  - FPM_2008_14_2_a0
ER  - 
%0 Journal Article
%A A. N. Abyzov
%A A. A. Tuganbaev
%T Rings over which all modules are $I_0$-modules.~II
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2008
%P 3-12
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2008_14_2_a0/
%G ru
%F FPM_2008_14_2_a0
A. N. Abyzov; A. A. Tuganbaev. Rings over which all modules are $I_0$-modules.~II. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 2, pp. 3-12. http://geodesic.mathdoc.fr/item/FPM_2008_14_2_a0/