Rings over which all modules are $I_0$-modules.~II
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 2, pp. 3-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

All right $R$-modules are $I_0$-modules if and only if either $R$ is a right SV-ring or $R/I^{(2)}(R)$ is an Artinian serial ring such that the square of the Jacobson radical of $R/I^{(2)}(R)$ is equal to zero.
@article{FPM_2008_14_2_a0,
     author = {A. N. Abyzov and A. A. Tuganbaev},
     title = {Rings over which all modules are $I_0${-modules.~II}},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {3--12},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_2_a0/}
}
TY  - JOUR
AU  - A. N. Abyzov
AU  - A. A. Tuganbaev
TI  - Rings over which all modules are $I_0$-modules.~II
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2008
SP  - 3
EP  - 12
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2008_14_2_a0/
LA  - ru
ID  - FPM_2008_14_2_a0
ER  - 
%0 Journal Article
%A A. N. Abyzov
%A A. A. Tuganbaev
%T Rings over which all modules are $I_0$-modules.~II
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2008
%P 3-12
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2008_14_2_a0/
%G ru
%F FPM_2008_14_2_a0
A. N. Abyzov; A. A. Tuganbaev. Rings over which all modules are $I_0$-modules.~II. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 2, pp. 3-12. http://geodesic.mathdoc.fr/item/FPM_2008_14_2_a0/

[1] Abyzov A. N., “Zamknutost slabo regulyarnykh modulei otnositelno pryamykh summ”, Izv. vyssh. uchebn. zaved. Matematika, 2003, no. 9, 3–5 | MR | Zbl

[2] Abyzov A. N., “Slabo regulyarnye moduli nad polusovershennymi koltsami”, Chebyshëvskii sb., 4:1 (2003), 4–9 | MR | Zbl

[3] Abyzov A. N., “Slabo regulyarnye moduli”, Izv. vyssh. uchebn. zaved. Matematika, 2004, no. 3, 3–6 | MR | Zbl

[4] Kash F., Moduli i koltsa, Mir, M., 1981 | MR | Zbl

[5] Sakhaev I. I., Khakmi Kh. I., “O silno regulyarnykh modulyakh i koltsakh”, Izv. vyssh. uchebn. zaved. Matematika, 1998, no. 2, 60–63 | MR | Zbl

[6] Tuganbaev A. A., “Moduli s bolshim chislom pryamykh slagaemykh”, Fundament. i prikl. mat., 12:8 (2006), 233–241 | MR

[7] Tuganbaev A. A., “Koltsa, nad kotorymi vse moduli poluregulyarny”, Fundament. i prikl. mat., 13:2 (2007), 185–194 | MR

[8] Tuganbaev A. A., “Koltsa, nad kotorymi vse moduli yavlyayutsya $I_0$-modulyami”, Fundament. i prikl. mat., 13:5 (2007), 193–200 | MR

[9] Tuganbaev A. A., “Koltsa bez beskonechnykh mnozhestv netsentralnykh ortogonalnykh idempotentov”, Fundament. i prikl. mat., 14:2 (2008), 207–221 | MR

[10] Feis K., Algebra: koltsa, moduli i kategorii, T. 1, Mir, M., 1977

[11] Khakmi Kh. I., “Silno regulyarnye i slabo regulyarnye koltsa i moduli”, Izv. vyssh. uchebn. zaved. Matematika, 1994, no. 5, 60–65 | MR | Zbl

[12] Dung N. V., Smith P. F., “On semiartinian $V$-modules”, J. Pure Appl. Algebra, 82:1 (1992), 27–37 | DOI | MR | Zbl

[13] Hamza H., “$I_0$-rings and $I_0$-modules”, Math. J. Okayama Univ., 40 (1998), 91–97 | MR

[14] Nicholson W. K., “$I$-rings”, Trans. Amer. Math. Soc., 207 (1975), 361–373 | DOI | MR | Zbl

[15] Tuganbaev A. A., Rings Close to Regular, Kluwer Academic, Dordrecht, 2002 | MR | Zbl

[16] Tuganbaev A. A., “Semiregular, weakly regular, and $\pi$-regular rings”, J. Math. Sci., 109:3 (2002), 1509–1588 | DOI | MR | Zbl

[17] Wisbauer R., Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, 1991 | MR | Zbl