Rings over which all modules are $I_0$-modules.~II
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 2, pp. 3-12
Voir la notice de l'article provenant de la source Math-Net.Ru
All right $R$-modules are $I_0$-modules if and only if either $R$ is a right SV-ring or $R/I^{(2)}(R)$ is an Artinian serial ring such that the square of the Jacobson radical of $R/I^{(2)}(R)$ is equal to zero.
@article{FPM_2008_14_2_a0,
author = {A. N. Abyzov and A. A. Tuganbaev},
title = {Rings over which all modules are $I_0${-modules.~II}},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {3--12},
publisher = {mathdoc},
volume = {14},
number = {2},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_2_a0/}
}
A. N. Abyzov; A. A. Tuganbaev. Rings over which all modules are $I_0$-modules.~II. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 2, pp. 3-12. http://geodesic.mathdoc.fr/item/FPM_2008_14_2_a0/