Holomorphic functions of exponential type and duality for Stein groups with algebraic connected component of identity
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 1, pp. 3-178.

Voir la notice de l'article provenant de la source Math-Net.Ru

We suggest a generalization of Pontryagin duality from the category of commutative, complex Lie groups to the category of (not necessarily commutative) Stein groups with algebraic connected component of identity. In contrast to the other similar generalizations, in our approach the enveloping category consists of Hopf algebras (in a proper symmetrical monoidal category).
@article{FPM_2008_14_1_a0,
     author = {S. S. Akbarov},
     title = {Holomorphic functions of exponential type and duality for {Stein} groups with algebraic connected component of identity},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {3--178},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_1_a0/}
}
TY  - JOUR
AU  - S. S. Akbarov
TI  - Holomorphic functions of exponential type and duality for Stein groups with algebraic connected component of identity
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2008
SP  - 3
EP  - 178
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2008_14_1_a0/
LA  - ru
ID  - FPM_2008_14_1_a0
ER  - 
%0 Journal Article
%A S. S. Akbarov
%T Holomorphic functions of exponential type and duality for Stein groups with algebraic connected component of identity
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2008
%P 3-178
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2008_14_1_a0/
%G ru
%F FPM_2008_14_1_a0
S. S. Akbarov. Holomorphic functions of exponential type and duality for Stein groups with algebraic connected component of identity. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 1, pp. 3-178. http://geodesic.mathdoc.fr/item/FPM_2008_14_1_a0/

[1] Artamonov V. A., Salii V. N., Skornyakov L. A., Shevrin L. N., Shulgeifer E. G., Obschaya algebra, Nauka, M., 1991 | MR

[2] Burbaki N., Topologicheskie vektornye prostranstva, Izd. inostr. lit., M., 1959

[3] Burbaki N., Obschaya topologiya. Topologicheskie gruppy. Chisla i svyazannye s nimi gruppy i prostranstva, Nauka, M., 1969 | MR

[4] Vainerman L. I., “Kharakterizatsiya ob'ektov, dvoistvennykh k lokalno kompaktnym gruppam”, Funkts. analiz i ego pril., 8:1 (1974), 75–76 | MR | Zbl

[5] Vainerman L. I., Kats G. I., “Neunimodulyarnye koltsevye gruppy i algebry Khopfa–fon Neimana”, DAN SSSR, 211 (1973), 1031–1034 | MR | Zbl

[6] Vainerman L. I., Kats G. I., “Neunimodulyarnye koltsevye gruppy i algebry Khopfa–fon Neimana”, Mat. sb., 94(136):2 (1974), 194–225 | MR | Zbl

[7] Vinberg E. B., Onischik A. L., Seminar po gruppam Li i algebraicheskim gruppam, URSS, M., 1995 | MR | Zbl

[8] Grauert G., Remmert R., Teoriya prostranstv Shteina, Nauka, M., 1989 | MR | Zbl

[9] Kassel K., Kvantovye gruppy, Fazis, M., 1999

[10] Krein M. G., “Printsip dvoistvennosti dlya bikompaktnoi gruppy i kvadratnoi blok-algebry”, DAN SSSR, 69 (1949), 725–728 | MR | Zbl

[11] Pirkovskii A. Yu., “Obolochki Arensa–Maikla, gomologicheskie epimorfizmy i otnositelno kvazisvobodnye algebry”, Trudy MMO, 6, 2008, 34–123 | MR

[12] Pich A., Yadernye lokalno vypuklye prostranstva, Mir, M., 1967 | MR

[13] Rudin U., Funktsionalnyi analiz, Mir, M., 1975 | MR

[14] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989 | MR | Zbl

[15] Khyuitt E., Ross K., Abstraktnyi garmonicheskii analiz, T. 2, Mir, M., 1975

[16] Shabat B. V., Vvedenie v kompleksnyi analiz, Ch. I, Nauka, M., 1985 | MR

[17] Shabat B. V., Vvedenie v kompleksnyi analiz, Ch. II, Nauka, M., 1985 | MR

[18] Shefer Kh., Topologicheskie vektornye prostranstva, Mir, M., 1971 | MR

[19] Akbarov S. S., “Stereotype spaces, algebras, homologies: An outline”, Topological Homology, ed. A. Ya. Helemskii, Nova Science Publishers, Huntinhton, NY, 2000, 1–27 | MR | Zbl

[20] Akbarov S. S., “Pontryagin duality in the theory of topological vector spaces and in topological algebra”, J. Math. Sci., 113:2 (2003), 179–349 | DOI | MR | Zbl

[21] Akbarov S. S., “Pontryagin duality and topological algebras”, Topological Algebras, Their Applications and Related Topics, Banach Center Publications, 67, eds. K. Jarosz, A. Soltysiak, 2005, 55–71 | MR | Zbl

[22] Brauner K., “Duals of Fréchet spaces and a generalization of the Banach–Dieudonné theorem”, Duke Math. J., 40:4 (1973), 845–855 | DOI | MR | Zbl

[23] Chari V., Pressley A., A Guide to Quantum Groups, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[24] Van Daele A., “Dual pairs of Hopf $*$-algebras”, Bull. London Math. Soc., 25 (1993), 209–230 | DOI | MR | Zbl

[25] Van Daele A., “Multiplier Hopf algebras”, Trans. Amer. Math. Soc., 342 (1994), 917–932 | DOI | MR | Zbl

[26] Van Daele A., “An algebraic framework for group duality”, Adv. Math., 140 (1998), 323–366 | DOI | MR | Zbl

[27] Van Daele A., The Haar measure on some locally compact quantum groups, , 2001 arxiv: math/0109004v1[math.OA]

[28] Dăscălescu S., Năstăsescu C., Raianu Ş., Hopf Algebras, Marcel Dekker, New York, 2001 | MR

[29] Enock M., Schwartz J.-M., “Une dualité dans les algèbres de von Neumann”, Note C. R. Acad. Sci. Paris, 277 (1973), 683–685 | MR | Zbl

[30] Enock M., Schwartz J.-M., “Une catégorie d'algèbres de Kac”, Note C. R. Acad. Sci. Paris, 279 (1974), 643–645 | MR | Zbl

[31] Enock M., Schwartz J.-M., “Une dualité dans les algèbres de von Neumann”, Supp. Bull. Soc. Math. France Mém., 44 (1975), 1–144 | MR

[32] Enock M., Schwartz J.-M., Kac Algebras and Duality of Locally Compact Groups, Springer, Berlin, 1992 | MR | Zbl

[33] Jarchow H., Locally Convex Spaces, Teubner, Stuttgart, 1981 | MR | Zbl

[34] Kakutani S., Klee V., “The finite topology of a linear space”, Arch. Math., 14:1 (1963), 55–58 | DOI | MR | Zbl

[35] Kustermans J., Vaes S., “Locally compact quantum groups”, Ann. Sci. École Norm. Sup. (4), 33:6 (2000), 837–934 | MR | Zbl

[36] Levin B. Ya., Lectures on Entire Functions, Amer. Math. Soc., Providence, 1996 | MR | Zbl

[37] MacLane S., Categories for the Working Mathematician, Springer, Berlin, 1971 | MR | Zbl

[38] Neeb K.-H., Holomorphy and Convexity in Lie Theory, Walter de Gruyter, Berlin, 2000 | MR

[39] Kustermans J., Pusz W., Sołtan P. M., Vaes S., Van Daele A., Vainerman L., Woronowicz S. L., “Locally compact quantum groups”, Quantum Symmetry in Noncommutative Geometry. Locally Compact Quantum Groups. Lect. Notes School, Conf. on Noncommutative Geometry and Quantum Groups (Warsaw, 2001), Banach Center Publications, ed. P. M. Hajak (to appear) | MR

[40] Pontrjagin L., “The theory of topological commutative groups”, Ann. Math., 35:2 (1934), 361–388 | DOI | MR | Zbl

[41] Saavedra Rivano N., Catègories Tannakiennes, Lect. Notes Math., 265, Springer, Berlin, 1972 | MR | Zbl

[42] Schauenburg P., “On the braiding on a Hopf algebra in a braided category”, New York J. Math., 4 (1998), 259–263 | MR | Zbl

[43] Smith M. F., “The Pontrjagin duality theorem in linear spaces”, Ann. Math., 56:2 (1952), 248–253 | DOI | MR | Zbl

[44] Street R., Quantum Groups: A Path to Current Algebra, Australian Math. Soc. Lect. Ser., 19, Cambridge, 2007 | MR | Zbl

[45] Sweedler M. E., “Cocommutative Hopf algebras with antipode”, Bull. Amer. Math. Soc., 73:1 (1967), 126–128 | DOI | MR | Zbl

[46] Taylor J. L., Several Complex Variables with Connections to Algebraic Geometry and Lie Groups, Grad. Stud. Math., 46, Amer. Math. Soc., Providence, 2002 | MR | Zbl

[47] Wang S., Quantum $ax+b$ group as quantum automorphism group of $k[x]$, , 1998 arxiv: math/9807094v2[math.OA]

[48] Woronowicz S. L., “Quantum $az+b$ group on complex plane”, Int. J. Math., 12:4 (2001), 461–503 | DOI | MR | Zbl

[49] Zhang S., Braided Hopf algebras, , 2006 arxiv: math/0511251v8[math.RA]