Theories of bundles with additional structures
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 8, pp. 77-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we study bundles equipped with extra homotopy conditions, in particular, so-called $n$-bundles. It is shown that (under some condition) the classifying space of 1-bundles is the double coset space of some finite-dimensional Lie group.
@article{FPM_2007_13_8_a5,
     author = {A. V. Ershov},
     title = {Theories of bundles with additional structures},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {77--98},
     publisher = {mathdoc},
     volume = {13},
     number = {8},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a5/}
}
TY  - JOUR
AU  - A. V. Ershov
TI  - Theories of bundles with additional structures
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 77
EP  - 98
VL  - 13
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a5/
LA  - ru
ID  - FPM_2007_13_8_a5
ER  - 
%0 Journal Article
%A A. V. Ershov
%T Theories of bundles with additional structures
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 77-98
%V 13
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a5/
%G ru
%F FPM_2007_13_8_a5
A. V. Ershov. Theories of bundles with additional structures. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 8, pp. 77-98. http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a5/

[1] Aschieri P., Cantini L., Jurčo B., Nonabelian bundle gerbes, their differential geometry and gauge theory, , 2003 arXiv:hep-th/0312154

[2] Atiyah M., Segal G., Twisted $K$-theory, , 2004 arXiv:math.KT/0407054 | MR

[3] Ershov A. V., Homotopy theory of bundles with fiber matrix algebra, Preprint 01, Max-Planck-Institut für Mathematik, 2003

[4] Ershov A. V., “Homotopy theory of bundles with fiber matrix algebra”, J. Math. Sci., 123:4 (2004), 4198–4220 | DOI | MR | Zbl

[5] Ershov A. V., “A generalization of the topological Brauer group”, J. $K$-Theory (to appear)

[6] Husemöller D., Joachim M., Jurčo B., Schottenloher M., Basic Bundle Theory and $K$-Cohomology Invariants, Lect. Notes Phys., 726, Springer, Berlin, 2008 | MR | Zbl