On the Cohen--Lusk theorem
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 8, pp. 61-67
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G$ be a finite group and $X$ be a $G$-space. For a map $f\colon X\to\mathbb R^m$, the partial coincidence set $A(f,k)$, $k\leq|G|$, is the set of points $x\in X$ such that there exist $k$ elements $g_1,\dots,g_k$ of the group $G$, for which $f(g_1x)=\dots=f(g_kx)$ hold. We prove that the partial coincidence set is nonempty for $G=\mathbb Z_p^n$ under some additional assumptions.
@article{FPM_2007_13_8_a3,
author = {A. Yu. Volovikov},
title = {On the {Cohen--Lusk} theorem},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {61--67},
publisher = {mathdoc},
volume = {13},
number = {8},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a3/}
}
A. Yu. Volovikov. On the Cohen--Lusk theorem. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 8, pp. 61-67. http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a3/