On the Cohen--Lusk theorem
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 8, pp. 61-67

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group and $X$ be a $G$-space. For a map $f\colon X\to\mathbb R^m$, the partial coincidence set $A(f,k)$, $k\leq|G|$, is the set of points $x\in X$ such that there exist $k$ elements $g_1,\dots,g_k$ of the group $G$, for which $f(g_1x)=\dots=f(g_kx)$ hold. We prove that the partial coincidence set is nonempty for $G=\mathbb Z_p^n$ under some additional assumptions.
@article{FPM_2007_13_8_a3,
     author = {A. Yu. Volovikov},
     title = {On the {Cohen--Lusk} theorem},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {61--67},
     publisher = {mathdoc},
     volume = {13},
     number = {8},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a3/}
}
TY  - JOUR
AU  - A. Yu. Volovikov
TI  - On the Cohen--Lusk theorem
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 61
EP  - 67
VL  - 13
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a3/
LA  - ru
ID  - FPM_2007_13_8_a3
ER  - 
%0 Journal Article
%A A. Yu. Volovikov
%T On the Cohen--Lusk theorem
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 61-67
%V 13
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a3/
%G ru
%F FPM_2007_13_8_a3
A. Yu. Volovikov. On the Cohen--Lusk theorem. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 8, pp. 61-67. http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a3/