On isomorphity of measure-preserving $\mathbb Z^2$-actions that have isomorphic Cartesian powers
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 8, pp. 193-212.

Voir la notice de l'article provenant de la source Math-Net.Ru

Assume that $\Delta$ and $\Pi$ are representations of the group $\mathbb Z^2$ by operators on the space $L_2(X,\mu)$ that are induced by measure-preserving automorphisms, and for some $d$, the representations $\Delta^{\otimes d}$ and $\Pi^{\otimes d}$ are conjugate to each other, $\Delta\bigl(\mathbb Z^2\setminus(0,0)\bigr)$ consists of weakly mixing operators, and there is a weak limit (over some subsequence in $\mathbb Z^2$ of operators from $\Delta(\mathbb Z^2)$) which is equal to a nontrivial, convex linear combination of elements of $\Delta(\mathbb Z^2)$ and of the projection onto constant functions. We prove that in this case, $\Delta$ and $\Pi$ are also conjugate to each other.
@article{FPM_2007_13_8_a11,
     author = {A. E. Troitskaya},
     title = {On isomorphity of measure-preserving $\mathbb Z^2$-actions that have isomorphic {Cartesian} powers},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {193--212},
     publisher = {mathdoc},
     volume = {13},
     number = {8},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a11/}
}
TY  - JOUR
AU  - A. E. Troitskaya
TI  - On isomorphity of measure-preserving $\mathbb Z^2$-actions that have isomorphic Cartesian powers
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 193
EP  - 212
VL  - 13
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a11/
LA  - ru
ID  - FPM_2007_13_8_a11
ER  - 
%0 Journal Article
%A A. E. Troitskaya
%T On isomorphity of measure-preserving $\mathbb Z^2$-actions that have isomorphic Cartesian powers
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 193-212
%V 13
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a11/
%G ru
%F FPM_2007_13_8_a11
A. E. Troitskaya. On isomorphity of measure-preserving $\mathbb Z^2$-actions that have isomorphic Cartesian powers. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 8, pp. 193-212. http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a11/

[1] Prikhodko A. A., “Razbienie na bashni fazovogo prostranstva $\mathbb Z^d$-deistviya, sokhranyayuschego meru”, Mat. zametki, 65 (1999), 712–725 | MR

[2] Ryzhikov V. V., “Tipichnost izomorfizma sokhranyayuschikh meru preobrazovanii pri izomorfizme ikh dekartovykh stepenei”, Mat. zametki, 59 (1995), 630–632 | MR

[3] Ryzhikov V. V., Troitskaya A. E., “Tenzornyi koren iz izomorfizma i slabye predely preobrazovanii”, Mat. zametki, 80:4 (2006), 596–600 | MR | Zbl

[4] Stepin A. M., “Spektralnye svoistva tipichnykh dinamicheskikh sistem”, Izv. AN SSSR. Ser. mat., 50:4 (1986), 801–834 | MR

[5] Glasner E., Ergodic Theory via Joinings, Amer. Math. Soc., Providence, 2003 | MR | Zbl

[6] Katznelson Y., Weiss B., “Commuting measure preserving transformations”, Israel J. Math., 12 (1972), 161–173 | DOI | MR | Zbl

[7] Ornstein D. S., Weiss B., “Ergodic theory of amenable group actions. I. The Rohlin lemma”, Bull. Amer. Math. Soc., 2:1 (1980), 161–164 | DOI | MR | Zbl

[8] Walters P., Ergodic Theory – Introductory Lectures, Lect. Notes Math., 458, Springer, Berlin, 1975 | MR | Zbl