On isomorphity of measure-preserving $\mathbb Z^2$-actions that have isomorphic Cartesian powers
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 8, pp. 193-212

Voir la notice de l'article provenant de la source Math-Net.Ru

Assume that $\Delta$ and $\Pi$ are representations of the group $\mathbb Z^2$ by operators on the space $L_2(X,\mu)$ that are induced by measure-preserving automorphisms, and for some $d$, the representations $\Delta^{\otimes d}$ and $\Pi^{\otimes d}$ are conjugate to each other, $\Delta\bigl(\mathbb Z^2\setminus(0,0)\bigr)$ consists of weakly mixing operators, and there is a weak limit (over some subsequence in $\mathbb Z^2$ of operators from $\Delta(\mathbb Z^2)$) which is equal to a nontrivial, convex linear combination of elements of $\Delta(\mathbb Z^2)$ and of the projection onto constant functions. We prove that in this case, $\Delta$ and $\Pi$ are also conjugate to each other.
@article{FPM_2007_13_8_a11,
     author = {A. E. Troitskaya},
     title = {On isomorphity of measure-preserving $\mathbb Z^2$-actions that have isomorphic {Cartesian} powers},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {193--212},
     publisher = {mathdoc},
     volume = {13},
     number = {8},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a11/}
}
TY  - JOUR
AU  - A. E. Troitskaya
TI  - On isomorphity of measure-preserving $\mathbb Z^2$-actions that have isomorphic Cartesian powers
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 193
EP  - 212
VL  - 13
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a11/
LA  - ru
ID  - FPM_2007_13_8_a11
ER  - 
%0 Journal Article
%A A. E. Troitskaya
%T On isomorphity of measure-preserving $\mathbb Z^2$-actions that have isomorphic Cartesian powers
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 193-212
%V 13
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a11/
%G ru
%F FPM_2007_13_8_a11
A. E. Troitskaya. On isomorphity of measure-preserving $\mathbb Z^2$-actions that have isomorphic Cartesian powers. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 8, pp. 193-212. http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a11/