On isomorphity of measure-preserving $\mathbb Z^2$-actions that have isomorphic Cartesian powers
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 8, pp. 193-212
Voir la notice de l'article provenant de la source Math-Net.Ru
Assume that $\Delta$ and $\Pi$ are representations of the group $\mathbb Z^2$ by operators on the space $L_2(X,\mu)$ that are induced by measure-preserving automorphisms, and for some $d$, the representations
$\Delta^{\otimes d}$ and $\Pi^{\otimes d}$ are conjugate to each other, $\Delta\bigl(\mathbb Z^2\setminus(0,0)\bigr)$ consists of weakly mixing operators, and there is a weak limit (over some subsequence in $\mathbb Z^2$ of operators from $\Delta(\mathbb Z^2)$) which is equal to a nontrivial, convex linear combination of elements of $\Delta(\mathbb Z^2)$ and of the projection onto constant functions.
We prove that in this case, $\Delta$ and $\Pi$ are also conjugate to each other.
@article{FPM_2007_13_8_a11,
author = {A. E. Troitskaya},
title = {On isomorphity of measure-preserving $\mathbb Z^2$-actions that have isomorphic {Cartesian} powers},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {193--212},
publisher = {mathdoc},
volume = {13},
number = {8},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a11/}
}
TY - JOUR AU - A. E. Troitskaya TI - On isomorphity of measure-preserving $\mathbb Z^2$-actions that have isomorphic Cartesian powers JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2007 SP - 193 EP - 212 VL - 13 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a11/ LA - ru ID - FPM_2007_13_8_a11 ER -
%0 Journal Article %A A. E. Troitskaya %T On isomorphity of measure-preserving $\mathbb Z^2$-actions that have isomorphic Cartesian powers %J Fundamentalʹnaâ i prikladnaâ matematika %D 2007 %P 193-212 %V 13 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a11/ %G ru %F FPM_2007_13_8_a11
A. E. Troitskaya. On isomorphity of measure-preserving $\mathbb Z^2$-actions that have isomorphic Cartesian powers. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 8, pp. 193-212. http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a11/