Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2007_13_8_a11, author = {A. E. Troitskaya}, title = {On isomorphity of measure-preserving $\mathbb Z^2$-actions that have isomorphic {Cartesian} powers}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {193--212}, publisher = {mathdoc}, volume = {13}, number = {8}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a11/} }
TY - JOUR AU - A. E. Troitskaya TI - On isomorphity of measure-preserving $\mathbb Z^2$-actions that have isomorphic Cartesian powers JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2007 SP - 193 EP - 212 VL - 13 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a11/ LA - ru ID - FPM_2007_13_8_a11 ER -
%0 Journal Article %A A. E. Troitskaya %T On isomorphity of measure-preserving $\mathbb Z^2$-actions that have isomorphic Cartesian powers %J Fundamentalʹnaâ i prikladnaâ matematika %D 2007 %P 193-212 %V 13 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a11/ %G ru %F FPM_2007_13_8_a11
A. E. Troitskaya. On isomorphity of measure-preserving $\mathbb Z^2$-actions that have isomorphic Cartesian powers. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 8, pp. 193-212. http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a11/
[1] Prikhodko A. A., “Razbienie na bashni fazovogo prostranstva $\mathbb Z^d$-deistviya, sokhranyayuschego meru”, Mat. zametki, 65 (1999), 712–725 | MR
[2] Ryzhikov V. V., “Tipichnost izomorfizma sokhranyayuschikh meru preobrazovanii pri izomorfizme ikh dekartovykh stepenei”, Mat. zametki, 59 (1995), 630–632 | MR
[3] Ryzhikov V. V., Troitskaya A. E., “Tenzornyi koren iz izomorfizma i slabye predely preobrazovanii”, Mat. zametki, 80:4 (2006), 596–600 | MR | Zbl
[4] Stepin A. M., “Spektralnye svoistva tipichnykh dinamicheskikh sistem”, Izv. AN SSSR. Ser. mat., 50:4 (1986), 801–834 | MR
[5] Glasner E., Ergodic Theory via Joinings, Amer. Math. Soc., Providence, 2003 | MR | Zbl
[6] Katznelson Y., Weiss B., “Commuting measure preserving transformations”, Israel J. Math., 12 (1972), 161–173 | DOI | MR | Zbl
[7] Ornstein D. S., Weiss B., “Ergodic theory of amenable group actions. I. The Rohlin lemma”, Bull. Amer. Math. Soc., 2:1 (1980), 161–164 | DOI | MR | Zbl
[8] Walters P., Ergodic Theory – Introductory Lectures, Lect. Notes Math., 458, Springer, Berlin, 1975 | MR | Zbl