Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2007_13_8_a1, author = {P. M. Akhmet'ev}, title = {Geometric approach to stable homotopy groups of spheres. {Kervaire} {invariants.~II}}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {17--41}, publisher = {mathdoc}, volume = {13}, number = {8}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a1/} }
TY - JOUR AU - P. M. Akhmet'ev TI - Geometric approach to stable homotopy groups of spheres. Kervaire invariants.~II JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2007 SP - 17 EP - 41 VL - 13 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a1/ LA - ru ID - FPM_2007_13_8_a1 ER -
P. M. Akhmet'ev. Geometric approach to stable homotopy groups of spheres. Kervaire invariants.~II. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 8, pp. 17-41. http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a1/
[1] Akhmetev P. M., Geometricheskii podkhod k stabilnym gomotopicheskim gruppam sfer. Invariant Kervera, arXiv:0710.5853[math.GT]
[2] Akhmetev P. M., Geometricheskii podkhod k stabilnym gomotopicheskim gruppam sfer. Invariant Khopfa, arXiv:0710.5779[math.AT]
[3] Akhmet'ev P. M., Eccles P. J., “The relationship between framed bordism and skew-framed bordism”, Bull. London Math. Soc., 39:3 (2007), 473–481 | DOI | MR | Zbl
[4] Barratt M. G., Jones J. D. S., Mahowald M. E., “The Kervaire invariant problem”, Contemp. Math., 19 (1983), 9–22 | MR | Zbl
[5] Carter J. S., “Surgery on codiomension one immersions in $\mathbb R^{n+1}$: Removing $n$-tuple points”, Trans. Amer. Math. Soc., 298:1 (1986), 83–101 | DOI | MR
[6] Carter J. S., “On generalizing Boy's surface: Constructing a generator of the third stable stem”, Trans. Amer. Math. Soc., 298:1 (1986), 103–122 | DOI | MR | Zbl
[7] Cohen R. L., Jones J. D. S., Mahowald M. E., “The Kervaire invariant of immersions”, Invent. Math., 79 (1985), 95–123 | DOI | MR | Zbl
[8] Eccles P. J., “Codimension one immersions and the Kervaire invariant problem”, Math. Proc. Cambridge Philos. Soc., 90 (1981), 483–493 | DOI | MR | Zbl
[9] Eccles P. J., “Representing framed bordism classes by manifolds embedded in low codimension”, Geom. Appl. Homotopy Theory I, Proc. Conf. (Evanston, 1977), Lect. Notes Math., 657, Springer, Berlin, 1978, 150–155 | MR
[10] Gromov M., Partial Differential Relations, Ergebnisse Math. ihrer Grenzgebiete (3), 9, Springer, Berlin, 1986 | MR | Zbl
[11] Szucs A., “Topology of $\Sigma^{1,1}$-singular maps”, Math. Proc. Cambridge Philos. Soc., 121:3 (1997), 465–477 | DOI | MR