Geometric approach to stable homotopy groups of spheres. Kervaire invariants.~II
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 8, pp. 17-41
Voir la notice de l'article provenant de la source Math-Net.Ru
We present an approach to the Kervaire-invariant-one problem. The notion of the geometric $(\mathbb Z/2\oplus\mathbb Z/2)$-control of self-intersection of a skew-framed immersion and the notion of the $(\mathbb Z/2\oplus\mathbb Z/4)$-structure on the self-intersection manifold of a $\mathbf D_4$-framed
immersion are introduced. It is shown that a skew-framed immersion $f\colon M^{\frac{3n+q}4}\looparrowright\mathbb R^n$, $0$ (in the $(\frac{3n}4+\varepsilon)$-range) admits
a geometric $(\mathbb Z/2\oplus\mathbb Z/2)$-control if the characteristic class of the skew-framing of this immersion admits a retraction of the order $q$, i.e., there exists a mapping $\kappa_0\colon M^{\frac{3n+q}4}\to\mathbb R\mathrm P^{\frac{3(n-q)}4}$ such that this composition $I\circ\kappa_0\colon M^{\frac{3n+q}4}\to\mathbb R\mathrm P^{\frac{3(n-q)}4}\to\mathbb R\mathrm P^\infty$ is the characteristic class of the skew-framing of $f$. Using the notion of $(\mathbb Z/2\oplus\mathbb Z/2)$-control,
we prove that for a sufficiently large $n$, $n=2^l-2$, an arbitrary immersed $\mathbf D_4$-framed manifold admits in the regular cobordism class (modulo odd torsion) an immersion with a $(\mathbb Z/2\oplus\mathbb Z/4)$-structure.
@article{FPM_2007_13_8_a1,
author = {P. M. Akhmet'ev},
title = {Geometric approach to stable homotopy groups of spheres. {Kervaire} {invariants.~II}},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {17--41},
publisher = {mathdoc},
volume = {13},
number = {8},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a1/}
}
TY - JOUR AU - P. M. Akhmet'ev TI - Geometric approach to stable homotopy groups of spheres. Kervaire invariants.~II JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2007 SP - 17 EP - 41 VL - 13 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a1/ LA - ru ID - FPM_2007_13_8_a1 ER -
P. M. Akhmet'ev. Geometric approach to stable homotopy groups of spheres. Kervaire invariants.~II. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 8, pp. 17-41. http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a1/