Geometric approach to stable homotopy groups of spheres. Kervaire invariants.~II
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 8, pp. 17-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present an approach to the Kervaire-invariant-one problem. The notion of the geometric $(\mathbb Z/2\oplus\mathbb Z/2)$-control of self-intersection of a skew-framed immersion and the notion of the $(\mathbb Z/2\oplus\mathbb Z/4)$-structure on the self-intersection manifold of a $\mathbf D_4$-framed immersion are introduced. It is shown that a skew-framed immersion $f\colon M^{\frac{3n+q}4}\looparrowright\mathbb R^n$, $0$ (in the $(\frac{3n}4+\varepsilon)$-range) admits a geometric $(\mathbb Z/2\oplus\mathbb Z/2)$-control if the characteristic class of the skew-framing of this immersion admits a retraction of the order $q$, i.e., there exists a mapping $\kappa_0\colon M^{\frac{3n+q}4}\to\mathbb R\mathrm P^{\frac{3(n-q)}4}$ such that this composition $I\circ\kappa_0\colon M^{\frac{3n+q}4}\to\mathbb R\mathrm P^{\frac{3(n-q)}4}\to\mathbb R\mathrm P^\infty$ is the characteristic class of the skew-framing of $f$. Using the notion of $(\mathbb Z/2\oplus\mathbb Z/2)$-control, we prove that for a sufficiently large $n$, $n=2^l-2$, an arbitrary immersed $\mathbf D_4$-framed manifold admits in the regular cobordism class (modulo odd torsion) an immersion with a $(\mathbb Z/2\oplus\mathbb Z/4)$-structure.
@article{FPM_2007_13_8_a1,
     author = {P. M. Akhmet'ev},
     title = {Geometric approach to stable homotopy groups of spheres. {Kervaire} {invariants.~II}},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {17--41},
     publisher = {mathdoc},
     volume = {13},
     number = {8},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a1/}
}
TY  - JOUR
AU  - P. M. Akhmet'ev
TI  - Geometric approach to stable homotopy groups of spheres. Kervaire invariants.~II
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 17
EP  - 41
VL  - 13
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a1/
LA  - ru
ID  - FPM_2007_13_8_a1
ER  - 
%0 Journal Article
%A P. M. Akhmet'ev
%T Geometric approach to stable homotopy groups of spheres. Kervaire invariants.~II
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 17-41
%V 13
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a1/
%G ru
%F FPM_2007_13_8_a1
P. M. Akhmet'ev. Geometric approach to stable homotopy groups of spheres. Kervaire invariants.~II. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 8, pp. 17-41. http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a1/

[1] Akhmetev P. M., Geometricheskii podkhod k stabilnym gomotopicheskim gruppam sfer. Invariant Kervera, arXiv:0710.5853[math.GT]

[2] Akhmetev P. M., Geometricheskii podkhod k stabilnym gomotopicheskim gruppam sfer. Invariant Khopfa, arXiv:0710.5779[math.AT]

[3] Akhmet'ev P. M., Eccles P. J., “The relationship between framed bordism and skew-framed bordism”, Bull. London Math. Soc., 39:3 (2007), 473–481 | DOI | MR | Zbl

[4] Barratt M. G., Jones J. D. S., Mahowald M. E., “The Kervaire invariant problem”, Contemp. Math., 19 (1983), 9–22 | MR | Zbl

[5] Carter J. S., “Surgery on codiomension one immersions in $\mathbb R^{n+1}$: Removing $n$-tuple points”, Trans. Amer. Math. Soc., 298:1 (1986), 83–101 | DOI | MR

[6] Carter J. S., “On generalizing Boy's surface: Constructing a generator of the third stable stem”, Trans. Amer. Math. Soc., 298:1 (1986), 103–122 | DOI | MR | Zbl

[7] Cohen R. L., Jones J. D. S., Mahowald M. E., “The Kervaire invariant of immersions”, Invent. Math., 79 (1985), 95–123 | DOI | MR | Zbl

[8] Eccles P. J., “Codimension one immersions and the Kervaire invariant problem”, Math. Proc. Cambridge Philos. Soc., 90 (1981), 483–493 | DOI | MR | Zbl

[9] Eccles P. J., “Representing framed bordism classes by manifolds embedded in low codimension”, Geom. Appl. Homotopy Theory I, Proc. Conf. (Evanston, 1977), Lect. Notes Math., 657, Springer, Berlin, 1978, 150–155 | MR

[10] Gromov M., Partial Differential Relations, Ergebnisse Math. ihrer Grenzgebiete (3), 9, Springer, Berlin, 1986 | MR | Zbl

[11] Szucs A., “Topology of $\Sigma^{1,1}$-singular maps”, Math. Proc. Cambridge Philos. Soc., 121:3 (1997), 465–477 | DOI | MR