Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2007_13_8_a0, author = {P. M. Akhmet'ev}, title = {Geometric approach to stable homotopy groups of spheres. {The} {Adams--Hopf} invariants}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {3--15}, publisher = {mathdoc}, volume = {13}, number = {8}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a0/} }
TY - JOUR AU - P. M. Akhmet'ev TI - Geometric approach to stable homotopy groups of spheres. The Adams--Hopf invariants JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2007 SP - 3 EP - 15 VL - 13 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a0/ LA - ru ID - FPM_2007_13_8_a0 ER -
P. M. Akhmet'ev. Geometric approach to stable homotopy groups of spheres. The Adams--Hopf invariants. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 8, pp. 3-15. http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a0/
[1] Melikhov S. A., “Vyvorachivaniya sfer i realizatsiya otobrazhenii”, Geometricheskaya topologiya i teoriya mnozhestv, Sb. statei k 100-letiyu L. V. Keldysh, Tr. Mat. in-ta im. V. A. Steklova, 247, Nauka, M., 2004, 159–181 | MR | Zbl
[2] Pontryagin L. S., Gladkie mnogoobraziya i ikh primenenie v teorii gomotopii, Nauka, M., 1976 | MR | Zbl
[3] Adams J. F., “On the non-existence of elements of Hopf-invariant one”, Ann. Math. (2), 72 (1960), 2–104 | DOI | MR | Zbl
[4] Adams J. F., “The Kahn–Priddy theorem”, Proc. Cambridge Philos. Soc., 73 (1973), 43–55 | DOI | MR
[5] Akhmet'ev P. M., Eccles P. J., “The relationship between framed bordism and skew-framed bordism”, Bull. London Math. Soc., 39:3 (2007), 473–481 | DOI | MR | Zbl
[6] Eccles P. J., “Codimension one immersions and the Kervaire invariant problem”, Math. Proc. Cambridge Philos. Soc., 90 (1981), 483–493 | DOI | MR | Zbl
[7] Eccles P. J., Grant M., “Bordism groups of immersions and classes represented by self-intersections”, Alg. Geom. Topol., 7 (2007), 1081–1097 | DOI | MR | Zbl
[8] Gromov M., Partial Differential Relations, Ergebnisse Math. ihrer Grenzgebiete (3), 9, Springer, Berlin, 1986 | MR | Zbl
[9] Hirsh M. W., “Immersions of manifolds”, Trans. Amer. Math. Soc., 93 (1960), 242–276 | DOI | MR
[10] Koschorke U., “Multiple points of immersions and the Kahn–Priddy theorem”, Math. Z., 169 (1979), 223–236 | DOI | MR
[11] Wells R., “Cobordism groups of immersions”, Topology, 5 (1966), 281–294 | DOI | MR | Zbl