@article{FPM_2007_13_8_a0,
author = {P. M. Akhmet'ev},
title = {Geometric approach to stable homotopy groups of spheres. {The} {Adams{\textendash}Hopf} invariants},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {3--15},
year = {2007},
volume = {13},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a0/}
}
P. M. Akhmet'ev. Geometric approach to stable homotopy groups of spheres. The Adams–Hopf invariants. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 8, pp. 3-15. http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a0/
[1] Melikhov S. A., “Vyvorachivaniya sfer i realizatsiya otobrazhenii”, Geometricheskaya topologiya i teoriya mnozhestv, Sb. statei k 100-letiyu L. V. Keldysh, Tr. Mat. in-ta im. V. A. Steklova, 247, Nauka, M., 2004, 159–181 | MR | Zbl
[2] Pontryagin L. S., Gladkie mnogoobraziya i ikh primenenie v teorii gomotopii, Nauka, M., 1976 | MR | Zbl
[3] Adams J. F., “On the non-existence of elements of Hopf-invariant one”, Ann. Math. (2), 72 (1960), 2–104 | DOI | MR | Zbl
[4] Adams J. F., “The Kahn–Priddy theorem”, Proc. Cambridge Philos. Soc., 73 (1973), 43–55 | DOI | MR
[5] Akhmet'ev P. M., Eccles P. J., “The relationship between framed bordism and skew-framed bordism”, Bull. London Math. Soc., 39:3 (2007), 473–481 | DOI | MR | Zbl
[6] Eccles P. J., “Codimension one immersions and the Kervaire invariant problem”, Math. Proc. Cambridge Philos. Soc., 90 (1981), 483–493 | DOI | MR | Zbl
[7] Eccles P. J., Grant M., “Bordism groups of immersions and classes represented by self-intersections”, Alg. Geom. Topol., 7 (2007), 1081–1097 | DOI | MR | Zbl
[8] Gromov M., Partial Differential Relations, Ergebnisse Math. ihrer Grenzgebiete (3), 9, Springer, Berlin, 1986 | MR | Zbl
[9] Hirsh M. W., “Immersions of manifolds”, Trans. Amer. Math. Soc., 93 (1960), 242–276 | DOI | MR
[10] Koschorke U., “Multiple points of immersions and the Kahn–Priddy theorem”, Math. Z., 169 (1979), 223–236 | DOI | MR
[11] Wells R., “Cobordism groups of immersions”, Topology, 5 (1966), 281–294 | DOI | MR | Zbl