Geometric approach to stable homotopy groups of spheres. The Adams--Hopf invariants
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 8, pp. 3-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a geometric approach to stable homotopy groups of spheres based on the Pontryagin–Thom construction is proposed. From this approach, a new proof of Hopf invariant one theorem of J. F. Adams for all dimensions except 15, 31, 63, and 127 is obtained. It is proved that for $n>127$, in stable homotopy group of spheres $\Pi_n$, there is no elements with Hopf invariant one. The new proof is based on geometric topology methods. The Pontryagin–Thom theorem (in the form proposed by R. Wells) about the representation of stable homotopy groups of the real, projective, infinite-dimensional space (these groups are mapped onto 2-components of stable homotopy groups of spheres by the Kahn–Priddy theorem) by cobordism classes of immersions of codimension 1 of closed manifolds (generally speaking, nonoriented) is considered. The Hopf invariant is expressed as a characteristic class of the dihedral group for the self-intersection manifold of an immersed codimension 1 manifold that represents the given element in the stable homotopy group. In the new proof, the geometric control principle (by M. Gromov) for immersions in the given regular homotopy classes based on the Smale–Hirsh immersion theorem is required.
@article{FPM_2007_13_8_a0,
     author = {P. M. Akhmet'ev},
     title = {Geometric approach to stable homotopy groups of spheres. {The} {Adams--Hopf} invariants},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {3--15},
     publisher = {mathdoc},
     volume = {13},
     number = {8},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a0/}
}
TY  - JOUR
AU  - P. M. Akhmet'ev
TI  - Geometric approach to stable homotopy groups of spheres. The Adams--Hopf invariants
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 3
EP  - 15
VL  - 13
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a0/
LA  - ru
ID  - FPM_2007_13_8_a0
ER  - 
%0 Journal Article
%A P. M. Akhmet'ev
%T Geometric approach to stable homotopy groups of spheres. The Adams--Hopf invariants
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 3-15
%V 13
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a0/
%G ru
%F FPM_2007_13_8_a0
P. M. Akhmet'ev. Geometric approach to stable homotopy groups of spheres. The Adams--Hopf invariants. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 8, pp. 3-15. http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a0/

[1] Melikhov S. A., “Vyvorachivaniya sfer i realizatsiya otobrazhenii”, Geometricheskaya topologiya i teoriya mnozhestv, Sb. statei k 100-letiyu L. V. Keldysh, Tr. Mat. in-ta im. V. A. Steklova, 247, Nauka, M., 2004, 159–181 | MR | Zbl

[2] Pontryagin L. S., Gladkie mnogoobraziya i ikh primenenie v teorii gomotopii, Nauka, M., 1976 | MR | Zbl

[3] Adams J. F., “On the non-existence of elements of Hopf-invariant one”, Ann. Math. (2), 72 (1960), 2–104 | DOI | MR | Zbl

[4] Adams J. F., “The Kahn–Priddy theorem”, Proc. Cambridge Philos. Soc., 73 (1973), 43–55 | DOI | MR

[5] Akhmet'ev P. M., Eccles P. J., “The relationship between framed bordism and skew-framed bordism”, Bull. London Math. Soc., 39:3 (2007), 473–481 | DOI | MR | Zbl

[6] Eccles P. J., “Codimension one immersions and the Kervaire invariant problem”, Math. Proc. Cambridge Philos. Soc., 90 (1981), 483–493 | DOI | MR | Zbl

[7] Eccles P. J., Grant M., “Bordism groups of immersions and classes represented by self-intersections”, Alg. Geom. Topol., 7 (2007), 1081–1097 | DOI | MR | Zbl

[8] Gromov M., Partial Differential Relations, Ergebnisse Math. ihrer Grenzgebiete (3), 9, Springer, Berlin, 1986 | MR | Zbl

[9] Hirsh M. W., “Immersions of manifolds”, Trans. Amer. Math. Soc., 93 (1960), 242–276 | DOI | MR

[10] Koschorke U., “Multiple points of immersions and the Kahn–Priddy theorem”, Math. Z., 169 (1979), 223–236 | DOI | MR

[11] Wells R., “Cobordism groups of immersions”, Topology, 5 (1966), 281–294 | DOI | MR | Zbl