Finite-dimensional quasirepresentations of connected Lie groups and Mishchenko's conjecture
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 7, pp. 85-225.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a description of the structure of all finite-dimensional, locally bounded quasirepresentations of arbitrary connected Lie groups is given and the proof of Mishchenko's conjecture for connected, locally compact groups and a proof of an analog of the van der Waerden theorem (i.e., the automatic continuity condition for all locally bounded, finite-dimensional representations) for the commutator subgroup of an arbitrary connected Lie group are presented.
@article{FPM_2007_13_7_a1,
     author = {A. I. Shtern},
     title = {Finite-dimensional quasirepresentations of connected {Lie} groups and {Mishchenko's} conjecture},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {85--225},
     publisher = {mathdoc},
     volume = {13},
     number = {7},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_7_a1/}
}
TY  - JOUR
AU  - A. I. Shtern
TI  - Finite-dimensional quasirepresentations of connected Lie groups and Mishchenko's conjecture
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 85
EP  - 225
VL  - 13
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_7_a1/
LA  - ru
ID  - FPM_2007_13_7_a1
ER  - 
%0 Journal Article
%A A. I. Shtern
%T Finite-dimensional quasirepresentations of connected Lie groups and Mishchenko's conjecture
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 85-225
%V 13
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_7_a1/
%G ru
%F FPM_2007_13_7_a1
A. I. Shtern. Finite-dimensional quasirepresentations of connected Lie groups and Mishchenko's conjecture. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 7, pp. 85-225. http://geodesic.mathdoc.fr/item/FPM_2007_13_7_a1/

[1] Vershik A. M., “Kommentarii k russkomu perevodu”, Fon Neiman Dzh. Izbrannye trudy po funktsionalnomu analizu, T. I, Nauka, M., 1988, 372–374

[2] Vershik A. M., Karpushev S. I., “Kogomologii grupp v unitarnykh predstavleniyakh, okrestnost edinitsy i uslovno polozhitelno opredelënnye funktsii”, Mat. sb., 119(161):4(12) (1982), 521–533 | MR | Zbl

[3] Gisharde A., Kogomologii topologicheskikh grupp i algebr Li, Mir, M., 1984 | MR

[4] Grinlif F., Invariantnye srednie na topologicheskikh gruppakh i ikh prilozheniya, Mir, M., 1973

[5] Danford N., Shvarts Dzh. T., Lineinye operatory, T. I, Izd. inostr. lit., M., 1962

[6] Diksme Zh., $C^*$-algebry i ikh predstavleniya, Nauka, M., 1974 | MR

[7] Dei M. M., Normirovannye lineinye prostranstva, Nauka, M., 1961

[8] Kasparov G. G., “Operatornyi $K$-funktor i rasshireniya $C^*$-algebr”, Izv. AN SSSR. Ser. mat., 44:3 (1980), 571–636 | MR | Zbl

[9] Manuilov V. M., “O pochti predstavleniyakh grupp $\pi\times\mathbf Z$”, Tr. Mat. in-ta im. V. A. Steklova, 225, Nauka, M., 1999, 257–263 | MR | Zbl

[10] Manuilov V. M., “Pochti predstavleniya i asimptoticheskie predstavleniya diskretnykh grupp”, Izv. RAN. Ser. mat., 63:5 (1999), 159–178 | MR | Zbl

[11] Manuilov V. M., “O $C^*$-algebrakh, svyazannykh s asimptoticheskimi gomomorfizmami”, Mat. zametki, 68:3 (2000), 377–384 | MR | Zbl

[12] Manuilov V. M., Mischenko A. S., “Asimptoticheskie i fredgolmovy predstavleniya diskretnykh grupp”, Mat. sb., 189:10 (1998), 53–74 | MR | Zbl

[13] Manuilov V. M., Tomsen K., “Asimptoticheski rasschepimye rasshireniya i $E$-teoriya”, Algebra i analiz, 12:5 (2000), 142–157 | MR

[14] Manuilov V. M., Tomsen K., “Otobrazhenie Konna–Khigsona yavlyaetsya izomorfizmom”, Uspekhi mat. nauk, 56:4 (2001), 151–152 | MR | Zbl

[15] Manuilov V. M., Tomsen K., “Translyatsionno invariantnye asimptoticheskie gomomorfizmy i rasshireniya $C^*$-algebr”, Funkts. analiz i ego pril., 39:3 (2005), 87–91 | MR | Zbl

[16] Mischenko A. S., “O fredgolmovykh predstavleniyakh diskretnykh grupp”, Funkts. analiz i ego pril., 9:2 (1975), 36–41 | MR | Zbl

[17] Ulam S., Nereshënnye matematicheskie zadachi, Nauka, M., 1964 | Zbl

[18] Faiziev V. A., “Psevdokharaktery na svobodnykh proizvedeniyakh polugrupp”, Funkts. analiz i ego pril., 21:1 (1987), 86–87 | MR | Zbl

[19] Faiziev V. A., “Psevdokharaktery na svobodnykh gruppakh i nekotorykh gruppovykh konstruktsiyakh”, Uspekhi mat. nauk, 43:5 (1988), 225–226 | MR | Zbl

[20] Feigin B. L., Fuks D. B., “Kogomologii grupp i algebr Li”, Itogi nauki i tekhniki. Ser. Sovr. probl. matematiki. Fundamentalnye napravleniya, 21, VINITI, M., 1988, 121–209 | MR

[21] Khelgason S., Differentsialnaya geometriya i simmetricheskie prostranstva, Mir, M., 1964 | Zbl

[22] Khelemskii A. Ya., Gomologiya v banakhovykh i topologicheskikh algebrakh, Izd-vo Mosk. un-ta, M., 1986 | MR

[23] Khelemskii A. Ya., Banakhovy i polinormirovannye algebry: obschaya teoriya, predstavleniya, gomologii, Nauka, M., 1989 | MR

[24] Khyuitt E., Ross K. A., Abstraktnyi garmonicheskii analiz, T. I, Nauka, M., 1975

[25] Shefer Kh., Topologicheskie vektornye prostranstva, Mir, M., 1971 | MR

[26] Shtern A. I., “O zhëstkosti polozhitelnykh kharakterov”, Uspekhi mat. nauk, 35:5 (1980), 218

[27] Shtern A. I., “Ob ustoichivosti gomomorfizmov v gruppu $R^*$”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 1982, no. 3, 29–32 | MR | Zbl

[28] Shtern A. I., “Ustoichivost predstavlenii i psevdokharaktery”, Lomonosovskie chteniya, Izd-vo Mosk. un-ta, M., 1983

[29] Shtern A. I., “Psevdokharakter, opredelënnyi simvolom Rademakhera”, Uspekhi mat. nauk, 45:3 (1990), 197–198 | MR | Zbl

[30] Shtern A. I., “Kvazipredstavleniya i psevdopredstavleniya”, Funkts. analiz i ego pril., 25:2 (1991), 70–73 | MR | Zbl

[31] Shtern A. I., “Ob operatorakh v prostranstvakh Freshe, podobnykh izometriyam”, Vestn. Mosk. un-ta. Ser. 1, Matematika, mekhanika, 1991, no. 4, 94–96 | MR

[32] Shtern A. I., “Kharakterizatsii amenabelnykh grupp v klasse svyaznykh lokalno kompaktnykh grupp”, Uspekhi mat. nauk, 49:2 (1994), 183–184 | MR | Zbl

[33] Shtern A. I., “Zhëstkost i approksimatsiya kvazipredstavlenii amenabelnykh grupp”, Mat. zametki, 65:6 (1999), 908–920 | MR | Zbl

[34] Shtern A. I., “Strukturnye svoistva i ogranichennye veschestvennye nepreryvnye 2-kogomologii lokalno kompaktnykh grupp”, Funkts. analiz i ego pril., 35:4 (2001), 67–80 | MR | Zbl

[35] Shtern A. I., “Kriterii slaboi i silnoi nepreryvnosti predstavlenii topologicheskikh grupp v banakhovykh prostranstvakh”, Mat. sb., 193:9 (2002), 139–156 | MR | Zbl

[36] Shtern A. I., “Deformatsiya neprivodimykh unitarnykh predstavlenii diskretnoi serii ermitovo simmetricheskikh prostykh grupp Li v klasse chistykh psevdopredstavlenii”, Mat. zametki, 73:3 (2003), 478–480 | MR | Zbl

[37] Shtern A. I., “Deformatsiya neprivodimykh unitarnykh predstavlenii diskretnoi serii ermitovo simmetricheskikh prostykh grupp Li v klasse chistykh psevdopredstavlenii”, Sovrem. mat. i eë pril., 1 (2003), 161–176 | MR

[38] Shtern A. I., “Kriterii nepreryvnosti konechnomernykh predstavlenii grupp”, Funktsionalnye prostranstva. Differentsialnye operatory. Problemy matematicheskogo obrazovaniya, Nauka, M., 2003, 122–124 | MR

[39] Shtern A. I., “Kriterii nepreryvnosti konechnomernykh predstavlenii svyaznykh lokalno kompaktnykh grupp”, Mat. sb., 195:9 (2004), 145–159 | MR | Zbl

[40] Shtern A. I., “Pochti periodicheskie funktsii i predstavleniya v lokalno vypuklykh prostranstvakh”, Uspekhi mat. nauk, 60:3 (2005), 97–168 | MR | Zbl

[41] Shtern A. I., “Proektivnye predstavleniya i chistye psevdopredstavleniya ermitovo simmetricheskikh prostykh grupp Li”, Mat. zametki, 78:1 (2005), 140–146 | MR | Zbl

[42] Shtern A. I., “Silnaya i slabaya nepreryvnost predstavlenii topologicheski psevdopolnykh grupp v lokalno vypuklykh prostranstvakh”, Mat. sb., 197:3 (2006), 155–176 | MR | Zbl

[43] Shtern A. I., “Problema Kazhdana–Milmana dlya poluprostykh kompaktnykh grupp Li”, Uspekhi mat. nauk, 62:1 (2007), 123–190 | MR | Zbl

[44] Shtern A. I., “Variant teoremy van der Vardena i dokazatelstvo gipotezy Mischenko dlya gomomorfizmov lokalno kompaktnykh grupp” (to appear)

[45] Engelking R., Obschaya topologiya, Mir, M., 1986 | MR

[46] Abel M., Jarosz K., “Small deformations of topological algebras”, Studia Math., 156:3 (2003), 202–226 | DOI | MR

[47] Araujo J., Jarosz K., “Separating maps on spaces of continuous functions”, Function Spaces, Proc. 3rd Conf. (Edwardsville, IL, 1998), Contemp. Math., 232, Amer. Math. Soc., Providence, 1999, 33–37 | MR | Zbl

[48] Bagley R. W., Wu T. S., Yang J. S., “Pro-Lie groups”, Trans. Amer. Math. Soc., 287:2 (1985), 829–838 | DOI | MR | Zbl

[49] Baker J. W., Lashkarizadeh B. M., “Representations and positive definite functions on topological semigroups”, Glasgow Math. J., 38:1 (1996), 99–111 | DOI | MR | Zbl

[50] Baker J., Lawrence J., Zorzitto F., “The stability of equation $f(xy)=f(x)f(y)$”, Proc. Amer. Math. Soc., 74:2 (1979), 242–246 | DOI | MR | Zbl

[51] Banach S., Théorie des opérations linéaires, Monogr. Mat., PWN, Warszaw, 1932

[52] Banyaga A., “Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique”, Comm. Math. Helv., 53:2 (1978), 174–227 | DOI | MR | Zbl

[53] Barge J., Ghys E., “Surfaces et cohomologie bornée”, Invent. Math., 92 (1988), 509–526 | DOI | MR | Zbl

[54] Barge J., Ghys E., “Cocycles d'Euler et de Maslov”, Math. Ann., 294:2 (1992), 235–265 | DOI | MR | Zbl

[55] Bavard C., “Longueur stable des commutateurs”, Enseign. Math., 37 (1991), 109–150 | MR | Zbl

[56] Beggs E. J., Pointwise bounded asymptotic morphisms and Thomsen's non-stable $k$-theory, , 2002 arXiv:math.OA/0201051

[57] Bekka M. B., de la Harpe P., Valette A., Kazhdan's Property (T), , 2004 http://perso.univ-rennes1.fr/bachir.bekka/KazhdanTotal.pdf

[58] Besson G., Sur la cohomologie bornée, Report. Séminaire cohomologie bornée, Éc. Norm. Sup. Lyon, Février 1988

[59] Biran P., Entov M., Polterovich L., “Calabi quasimorphisms for the symplectic ball”, Commun. Contemp. Math., 6:5 (2004), 793–802 | DOI | MR | Zbl

[60] Blackadar B., Kirchberg E., “Generalized inductive limits of finite-dimensional $C^*$-algebras”, Math. Ann., 307:3 (1997), 343–380 | DOI | MR | Zbl

[61] Borel A., “Sections locales de certains espaces fibrés”, C. R. Acad. Sci. Paris, 230 (1950), 1246–1248 | MR | Zbl

[62] Bouarich A., “Suites exactes en cohomologie bornée réelle des groups discrets”, C. R. Acad. Sci. Paris, 320 (1995), 1355–1359 | MR | Zbl

[63] Bourbaki N., Lie groups and Lie algebras. Chapters 7–9, Springer, Berlin, 2005 | MR | Zbl

[64] Brooks R., “Some remarks on bounded cohomology”, Riemann Surfaces and Related Topics, Proc. 1978 Stony Brook Conf. (State Univ. New York, Stony Brook, NY, 1978), Ann. Math. Stud., 97, Princeton Univ. Press, Princeton, 1981, 53–63 | MR

[65] Brown L. G., “Continuity of actions of groups and semigroups on Banach spaces”, J. London Math. Soc. (2), 62:1 (2000), 107–116 | DOI | MR | Zbl

[66] Brown L. G., Douglas R. G., Fillmore P. A., “Extensions of $C^*$-algebras and $K$-homology”, Ann. Math., 105:2 (1977), 265–324 | DOI | MR | Zbl

[67] Brown L. G., Wong N. C., “Unbounded disjointness preserving linear functionals”, Monatsh. Math., 141:1 (2004), 21–32 | DOI | MR | Zbl

[68] Brzdek J., “On orthogonally exponential and orthogonally additive mappings”, Proc. Amer. Math. Soc., 125 (1997), 2127–2132 | DOI | MR | Zbl

[69] Bühler T., Gromov's Geodesic Flow, Diplomarbeit, ETZ, Zürich, 2002

[70] Burger M., Iozzi A., “Boundary maps in bounded cohomology”, Geom. Funct. Anal., 12:2 (2002), 281–292 | DOI | MR | Zbl

[71] Burger M., Monod N., “Continuous bounded cohomology and applications to rigidity theory”, Geom. Funct. Anal., 12:2 (2002), 219–280 | DOI | MR | Zbl

[72] Burger M., Monod N., “On and around the bounded cohomology of $\rm{SL}_2$”, Rigidity in Dynamics and Geometry, Contrib. from the Programme Ergodic Theory, Geometric Rigidity and Number Theory, Isaac Newton Inst. for the Math. Sci. (Cambridge, January 5–July 7, 2000), Springer, Berlin, 2002, 19–37 | MR | Zbl

[73] Busby R. C., “Double centralizers and extensions of $C^*$-algebras”, Trans. Amer. Math. Soc., 132:1 (1968), 79–99 | DOI | MR | Zbl

[74] Calabi E., “On the group of automorphisms of a symplectic manifold”, Problems in Analysis, Lectures at the Symp. in Honor of Salomon Bochner (Princeton Univ., Princeton, NJ, 1969), Princeton Univ. Press, Princeton, 1970, 1–26 | MR | Zbl

[75] Cambern M., “On isomorphisms with small bound”, Proc. Amer. Math. Soc., 18 (1967), 1062–1066 | DOI | MR | Zbl

[76] Cartan É., “Les groupes réels simples, finis et continus”, Ann. Sci. École Norm. Sup. (3), 31 (1914), 263–355 | MR

[77] Christensen E., “Close operator algebras”, Deformation Theory of Algebras and Structures and Applications, NATO Adv. Study Inst. (Castelvecchio–Pascoli/Italy, 1986), NATO ASI Ser., Ser. C, Math. Phys. Sci., 247, Kluwer Academic, Dordrecht, 1988, 537–556 | MR

[78] Christensen E., Effros E. G., Sinclair A., “Completely bounded multilinear maps and $C^*$-algebraic cohomology”, Invent. Math., 90:2 (1987), 279–296 | DOI | MR | Zbl

[79] Connes A., Gromov M. L., Moscovici H., “Conjecture de Novikov et fibrés presque plats”, C. R. Acad. Sci. Paris Sér. I Math., 310:5 (1990), 273–277 | MR | Zbl

[80] Connes A., Higson N., Almost homomorphisms and $KK$-theory, , 1989 http://www.math.psu.edu/higson/Papers/ch1.pdf

[81] Connes A., Higson N., “Déformations, morphismes asymptotiques et $K$-théorie bivariante”, C. R. Acad. Sci. Paris Sér. I Math., 311:2 (1990), 101–106 | MR | Zbl

[82] Corach G., Galé J. E., “On amenability and geometry of spaces of bounded representations”, J. London Math. Soc. (2), 59:1 (1999), 311–329 | DOI | MR | Zbl

[83] Cuntz J., “Bivariante $K$-Theorie für lokalkonvexe Algebren und der bivariante Chern–Connes- Charakter”, Doc. Math., 2 (1997), 139–182 | MR | Zbl

[84] Cuntz J., Bivariant $K$-theory and the Weyl algebra, , 2004 arXiv:math.KT/0401295

[85] Dadarlat M., Eilers S., “Asymptotic unitary equivalence in $KK$-theory”, $K$-Theory, 23 (2001), 305–322 | DOI | MR | Zbl

[86] Dales H. G., Ghahramani F., Helemskii A. Ya., “The amenability of measure algebras”, J. London Math. Soc. (2), 66:1 (2002), 213–226 | DOI | MR | Zbl

[87] Dales H. G., Villena A. R., “Continuity of derivations, intertwining maps, and cocycles from Banach algebras”, J. London Math. Soc. (2), 63:2 (2001), 215–225 | DOI | MR | Zbl

[88] Dani S. G., Raja C. R. E., “Asymptotics of measures under group automorphisms and an application of factor sets”, Lie Groups and Ergodic Theory. Proc. Int. Colloq. (Mumbai, India, January 4–12, 1996), Tata Inst. Fundam. Res. Stud. Math., 14, Narosa Publ. Hause, New Delhi, 1998, 59–73 | MR | Zbl

[89] Debs G., Saint Raymond J., “Compact covering mappings between Borel sets and the size of constructible reals”, Trans. Amer. Math. Soc., 356:1 (2004), 73–117 | DOI | MR | Zbl

[90] Dedekind R., “Erlauterungen zu den Fragmenten, XXVIII”, Collected Works of Bernhard Riemann, Dover, New York, 1953, 466–478

[91] Duncan J., Hosseiniun S. A. R., “The second dual of a Banach algebra”, Proc. Roy. Soc. Edinburgh Sect. A, 19 (1979), 309–325 | MR

[92] Dupont J.-L., “Simplicial de Rham cohomology and characteristic classes of flat bundles”, Topology, 15 (1976), 233–245 | DOI | MR | Zbl

[93] Effros E. G., Ruan Z.-J., Operator spaces, London Math. Soc., New Ser., 23, Claredon Press, Oxford Univ. Press, New York, 2000 | MR | Zbl

[94] Eilers S., Loring T. A., “Computing contingencies for stable relations”, Internat. J. Math., 10:3 (1999), 301–326 | DOI | MR | Zbl

[95] Elliott G. A., Lin Q., “Cut-down method in the inductive limit decomposition of non-commutative tori”, J. London Math. Soc. (2), 54:1 (1996), 121–134 | MR | Zbl

[96] Entov M., “Commutator length of symplectomorphisms”, Comment. Math. Helv., 79 (2004), 58–104 | DOI | MR | Zbl

[97] Entov M., Polterovich L., “Calabi quasimorphism and quantum homology”, Internat. Math. Res. Notices, 30 (2003), 1635–1676 | DOI | MR | Zbl

[98] Exel R., Laca M., “Continuous Fell bundles associated to measurable twisted actions”, Proc. Amer. Math. Soc., 125:3 (1997), 795–799 | DOI | MR | Zbl

[99] Exel R., Loring T. A., “Invariants of almost commuting unitaries”, J. Funct. Anal., 95:2 (1991), 364–376 | DOI | MR | Zbl

[100] Eymard R., “L'algèbre de Fourier d'un groupe localement compact”, Bull. Soc. Math. France, 92 (1964), 181–236 | MR | Zbl

[101] Forrest B. E., Runde V., “Amenability and weak amenability of the Fourier algebra”, Math. Z., 250 (2004), 731–744 | DOI | MR

[102] Forti G. L., “The stability of homomorphisms and amenability, with applications to functional equations”, Abh. Math. Sem. Univ. Hamburg, 57 (1987), 215–226 | DOI | MR | Zbl

[103] Freudenthal H., “Beziehungen der $E_7$ und $E_8$ zur Oktavebene. I”, Indag. Math., 16:3 (1954), 218–230 | MR

[104] Gaal S. A., Linear Analysis and Representation Theory, Springer, New York, 1973 | MR | Zbl

[105] Gambaudo J.-M., Ghys É., “Commutators and diffeomorphisms of surfaces”, Ergodic Theory Dynam. Syst., 24:5 (2004), 1591–1617 | DOI | MR | Zbl

[106] Ghys É., “Groups acting on the circle”, Enseign. Math. (2), 47:3–4 (2001), 329–407 | MR | Zbl

[107] Gong G., Lin H., “Almost multiplicative morphisms and almost commuting matrices”, J. Operator Theory, 40:2 (1998), 217–275 | MR | Zbl

[108] Gong G., Lin H., “Almost multiplicative morphisms and $K$-theory”, Internat. J. Math., 11:8 (2000), 983–1000 | DOI | MR | Zbl

[109] Grigorchuk R. I., “Some results on bounded cohomology”, Combinatorial and Geometric Group Theory, Proc. Workshop Held at Heriot-Watt University (Edinburgh, 1993), London Math. Soc. Lect. Note Ser., 284, eds. A. J. Duncan, N. D. Gilbert, J. Howie, Cambridge Univ. Press, Cambridge, 1995, 111–163 | MR

[110] Gromov M., “Volume and bounded cohomology”, Inst. Hautes Études Sci. Publ. Math., 56 (1982), 5–99 | MR | Zbl

[111] Gromov M., “Positive curvature, macroscopic dimension, spectral gaps and higher signatures”, Functional Analysis on the Eve of the 21st Century, Vol. II, Birkhäuser, Boston, 1996, 1–213 | MR | Zbl

[112] Grønbæk N., “Amenability of weighted convolution algebras on locally compact groups”, Trans. Amer. Math. Soc., 319:2 (1990), 765–775 | DOI | MR | Zbl

[113] Grønbæk N., Johnson B. E., Willis G. A., “Amenability of Banach algebras of compact operators”, Israel J. Math., 87:1–3 (1994), 289–324 | MR | Zbl

[114] Grove K., Karcher H., Ruh E. A., “Jacobi fields and Finsler metrics on a compact Lie groups with an application to differential pinching problems”, Math. Ann., 211:1 (1974), 7–21 | DOI | MR | Zbl

[115] Guentner E., Higson N., Trout J., Equivariant $E$-Theory for $C^*$-Algebras, Mem. Amer. Math. Soc., 148{, No 703}, Amer. Math. Soc., Providence, RI, 2000 | MR

[116] Guichardet A., Wigner D., “Sur la cohomologie réelle des groupes de Lie simples réels”, Ann. Sci. École Norm. Sup. (4), 11 (1978), 277–292 | MR | Zbl

[117] De la Harpe P., Topics in Geometric Group Theory, Chicago Lect. Math., Univ. of Chicago Press, Chicago, 2000 | MR | Zbl

[118] De la Harpe P., Karoubi M., “Représentations approchées d'un groupe dans une algébre de Banach”, Manuscripta Math., 22:3 (1977), 293–310 | DOI | MR | Zbl

[119] Higson N., “A primer on $KK$-theory”, Operator Theory: Operator Algebras and Applications, Proc. Summer Res. Inst. (Durham, USA, 1988), Proc. Sympos. Pure Math., 51{, Part 1}, Amer. Math. Soc., Providence, RI, 1990, 239–283 | MR

[120] Higson N., Roe J., “Amenable group actions and the Novikov conjecture”, J. Reine Angew. Math., 519 (2000), 143–153 | DOI | MR | Zbl

[121] Hofmann K.-H., Morris S. A., The Structure of Compact Groups, Walter de Gruyter, Berlin, 1998 | MR | Zbl

[122] Hofmann K.-H., Ruppert W. A. F., Lie groups and subsemigroups with surjective exponential function, Mem. Amer. Math. Soc., 618, Amer. Math. Soc., Providence, RI, 1997 | MR | Zbl

[123] Hotzel E., “Right projective semigroups with 0”, J. Pure Appl. Algebra, 170:1 (2002), 35–66 | DOI | MR | Zbl

[124] Howey R. A. J., “Approximately multiplicative functionals on algebras of smooth functions”, J. London Math. Soc. (2), 68:3 (2003), 739–752 | DOI | MR | Zbl

[125] Hyers D. H., “On the stability of the linear functional equation”, Proc. Natl. Acad. Sci. USA, 27:2 (1941), 222–224 | DOI | MR | Zbl

[126] Hyers D. H., Rassias T. M., “Approximate homomorphisms”, Aequationes Math., 44:2–3 (1992), 125–153 | DOI | MR | Zbl

[127] Hyers D. H., Ulam S. M., “On approximate isometry”, Bull. Amer. Math. Soc., 51 (1945), 288–292 | DOI | MR | Zbl

[128] Iwasawa K., “On some types of topological groups”, Ann. Math., 50:2 (1949), 507–558 | DOI | MR | Zbl

[129] Jarosz K., Perturbations of Banach Algebras, Lect. Notes Math., 1120, Springer, Berlin, 1985 | MR | Zbl

[130] Jarosz K., “Small isomorphisms between operator algebras”, Proc. Edinburgh Math. Soc. (2), 28:2 (1985), 121–131 | DOI | MR | Zbl

[131] Jarosz K., “Perturbations of function algebras”, Deformation Theory of Algebras and Structures and Applications, NATO Adv. Study Inst. (Castelvecchio–Pascoli/Italy, 1986), NATO ASI Ser., Ser. C, Math. Phys. Sci., 247, Kluwer Academic, Dordrecht, 1988, 557–563 | MR

[132] Jarosz K., “Automatic continuity of separating linear isomorphisms”, Can. Math. Bull., 33:2 (1990), 139–144 | DOI | MR | Zbl

[133] Jarosz K., “Small perturbations of algebras of analytic functions on polydiscs”, Function Spaces, Proc. Conf. (Edwardsville, USA, 1990), Lect. Notes Pure Appl. Math., 136, Marcel Dekker, New York, 1992, 223–240 | MR

[134] Jarosz K., “Almost multiplicative functionals”, Studia Math., 124:1 (1997), 37–58 | MR | Zbl

[135] Jarosz K., “When is a linear functional multiplicative?”, Function Spaces, Proc. 3rd Conf. (Edwardsville, USA, May 19–23, 1998), Contemp. Math., 232, Amer. Math. Soc., Providence, RI, 1999, 201–210 | MR | Zbl

[136] Johnson B. E., Cohomology in Banach Algebras, Mem. Amer. Math. Soc., 127, Amer. Math. Soc., Providence, RI, 1972 | MR | Zbl

[137] Johnson B. E., “Approximate diagonals and cohomology of certain annihilator Banach algebras”, Amer. J. Math., 94 (1972), 685–698 | DOI | MR | Zbl

[138] Johnson B. E., “Perturbations of Banach algebras”, Proc. London Math. Soc. (3), 34:3 (1977), 439–458 | DOI | MR | Zbl

[139] Johnson B. E., “Approximately multiplicative functionals”, J. London Math. Soc. (2), 34:3 (1986), 489–510 | DOI | MR | Zbl

[140] Johnson B. E., “Continuity of generalized homomorphisms”, Bull. London Math. Soc., 19:1 (1987), 67–71 | DOI | MR | Zbl

[141] Johnson B. E., “Approximately multiplicative maps between Banach algebras”, J. London Math. Soc. (2), 37:2 (1988), 294–316 | DOI | MR | Zbl

[142] Johnson B. E., “Perturbations of multiplication and homomorphisms”, Deformation Theory of Algebras and Structures and Applications, NATO Adv. Study Inst. (Castelvecchio–Pascoli/Italy, 1986), NATO ASI Ser., Ser. C, Math. Phys. Sci., 247, Kluwer Academic, Dordrecht, 1988, 565–579 | MR

[143] Johnson B. E., “Derivations from $L^1(G)$ into $L^1(G)$ and $L^\infty(G)$”, Harmonic Analysis, Proc. Int. Symp. (Luxembourg, 1987), Lect. Notes Math., 1359, Springer, Berlin, 1988, 191–198 | MR

[144] Johnson B. E., “Near inclusions for subhomogeneous $C^*$ algebras”, Proc. London Math. Soc. (3), 68:2 (1994), 399–422 | DOI | MR | Zbl

[145] Johnson B. E., “Non-amenability of the Fourier algebra of a compact group”, J. London Math. Soc. (2), 50:2 (1994), 361–374 | MR | Zbl

[146] Johnson B. E., “Symmetric amenability and the nonexistence of Lie and Jordan derivations”, Math. Proc. Cambridge Philos. Soc., 120:3 (1996), 455–473 | DOI | MR | Zbl

[147] Johnson B. E., “Local derivations on $C^*$-algebras are derivations”, Trans. Amer. Math. Soc., 353:1 (2001), 313–325 | DOI | MR | Zbl

[148] Johnson B. E., “The derivation problem for group algebras of connected locally compact groups”, J. London Math. Soc. (2), 63:2 (2001), 441–452 | DOI | MR | Zbl

[149] Kazhdan D., “On $\varepsilon$-representations”, Israel J. Math., 43:4 (1982), 315–323 | DOI | MR | Zbl

[150] Kotschick D., “What is $\dots$ a quasi-morphism?”, Notices Amer. Math. Soc., 51:2 (2004), 208–209 | MR | Zbl

[151] Kunze R. A., Stein E. M., “Uniformly bounded representations and harmonic analysis on the $2\times2$ real unimodular group”, Amer. J. Math., 82:1 (1960), 1–62 | DOI | MR | Zbl

[152] Landsman N. P., “Strict deformation quantization of a particle in external gravitational and Yang–Mills fields”, J. Geom. Phys., 12:2 (1993), 93–132 | DOI | MR | Zbl

[153] Lau A. T.-M., “Amenability of semigroups”, The Analytical and Topological Theory of Semigroups, De Gruyter Exp. Math., 1, Walter de Gruyter, Berlin, 1990, 313–334 | MR

[154] Lawrence J. W., “The stability of multiplicative semigroup homomorphisms to real normed algebras”, Aequationes Math., 28:1–2 (1985), 94–101 | DOI | MR | Zbl

[155] Lin H., “Almost multiplicative morphisms and some applications”, J. Operator Theory, 37:1 (1997), 121–154 | MR | Zbl

[156] Lin H., “When almost multiplicative morphisms are close to homomorphisms”, Trans. Amer. Math. Soc., 351:12 (1999), 5027–5049 | DOI | MR | Zbl

[157] Lin H., Phillips N. C., “Almost multiplicative morphisms and the Cuntz algebra $\mathcal O_2$”, Internat. J. Math., 6:4 (1995), 625–643 | DOI | MR | Zbl

[158] Lorentz G. G., “A contribution to the theory of divergent sequences”, Acta Math., 80 (1948), 167–190 | DOI | MR | Zbl

[159] Loring T. A., “Almost multiplicative maps between $C^*$ algebras”, Operator Algebras and Quantum Field Theory, Proc. Conf. Dedicated to Daniel Kastler in Celebration of his 70th Birthday (Accademia Nazionale dei Lincei, Roma, Italy, July 1–6, 1996), ed. S. Doplicher, Internat. Press, Cambridge, MA, 1997, 111–122 | MR | Zbl

[160] Loring T. A., Pedersen G. K., “Corona extendibility and asymptotic multiplicativity”, $K$-Theory, 11:1 (1997), 83–102 | DOI | MR | Zbl

[161] Louvet N., “A propos d'un théorème de Vershik et Karpushev”, Enseign. Math. (2), 47:3–4 (2001), 287–314 | MR | Zbl

[162] Loy R. J., Read C. J., Runde V., Willis G. A., “Amenable and weakly amenable Banach algebras with compact multiplication”, J. Funct. Anal., 171:1 (2000), 78–114 | DOI | MR | Zbl

[163] Ma D., “Upper semicontinuity of isotropy and automorphism groups”, Math. Ann., 292:3 (1992), 533–545 | MR

[164] Mackey G. W., “Borel structure in groups and their duals”, Trans. Amer. Math. Soc., 85 (1957), 134–165 | DOI | MR | Zbl

[165] Manning J. F., “Geometry of pseudocharacters”, Geom. Topol., 9 (2005), 1147–1185 | DOI | MR | Zbl

[166] Manuilov V. M., “Almost commutativity implies asymptotic commutativity”, Operator Theoretical Methods, Proc. 17th Int. Conf. on Operator Theory (Timişoara, Romania, June 23–26, 1998), ed. A. Gheondea, Theta Foundation, Bucharest, 2000, 257–268 | MR | Zbl

[167] Manuilov V. M., Mishchenko A. S., “Almost, asymptotic and fredholm representations of discrete groups”, Acta Appl. Math., 68 (2001), 159–210 | DOI | MR | Zbl

[168] Manuilov V. M., Thomsen K., “Quasidiagonal extensions and sequentially trivial asymptotic homomorphisms”, Adv. Math., 154 (2000), 258–279 | DOI | MR | Zbl

[169] Manuilov V., Thomsen K., “$E$-theory is a special case of $KK$-theory”, Proc. London Math. Soc. (3), 88:2 (2004), 455–478 | DOI | MR | Zbl

[170] Manuilov V., Thomsen K., “Semi-invertible extensions and asymptotic homomorphisms”, $K$-Theory, 32:2 (2004), 101–138 | DOI | MR | Zbl

[171] Manuilov V., Thomsen K., “The Connes–Higson construction is an isomorphism”, J. Funct. Anal., 213:1 (2004), 154–175 | DOI | MR | Zbl

[172] McDuff D., “A survey of the topological properties of symplectomorphism groups”, Topology, Geometry and Quantum Field Theory, London Math. Soc. Lect. Note Ser., 308, Cambridge Univ. Press, Cambridge, 2004, 173–193 | MR | Zbl

[173] Megrelishvili M., “Generalized Heisenberg groups and Shtern's question”, Georgian Math. J., 11:4 (2004), 775–782 | MR | Zbl

[174] Mishchenko A. S., Mohammad N., “Asymptotic representation of discrete groups”, Lie Groups and Lie Algebras, Math. Appl., 433, Kluwer Academic, Dordrecht, 1998, 299–312 | MR | Zbl

[175] Monod N., Continuous Bounded Cohomology of Locally Compact Groups, Lect. Notes Math., 1758, Springer, Berlin, 2001 | MR | Zbl

[176] Monod N., Remy B., Boundedly generated groups with pseudocharacter(s), Appendix A, , 2003 arXiv:math.GR/0310065

[177] Montgomery D., Zippin L., “A theorem on Lie groups”, Bull. Amer. Math. Soc., 48 (1942), 448–452 | DOI | MR | Zbl

[178] Montgomery D., Zippin L., Topological Transformation Groups, Interscience Publishers, New York, 1955 | MR | Zbl

[179] Moore C. C., “Group extensions and cohomology for locally compact groups. III”, Trans. Amer. Math. Soc., 221:1 (1976), 1–33 | DOI | MR | Zbl

[180] Moore R. T., Measurable, Continuous and Smooth Vectors for Semi-Groups and Group Representations, Mem. Amer. Math. Soc., 78, Amer. Math. Soc., Providence, 1968 | MR | Zbl

[181] Naimark M. A., Štern [Shtern] A. I., Theory of Group Representations, Springer, Berlin, 1982 | MR | Zbl

[182] Neeb K.-H., “On a theorem of S. Banach”, J. Lie Theory, 7:2 (1997), 293–300 | MR | Zbl

[183] Neeb K.-H., Pickrell D., “Supplements to the papers entitled: 'On a theorem of S. Banach' and 'The separable representations of $\operatorname{U}(H)$' ”, J. Lie Theory, 10:1 (2000), 107–109 | MR | Zbl

[184] Von Neumann J., “Approximative properties of matrices of high finite order”, Portugal. Math., 3 (1942), 1–62 ; fon Neiman Dzh., “Approksimativnye svoistva matrits vysokogo konechnogo poryadka”, Izbrannye trudy po funktsionalnomu analizu, T. I, Nauka, M., 1988, 277–328 | MR | Zbl

[185] Nikolov N., Segal D., “Finite index subgroups in profinite groups”, C. R. Math. Acad. Sci. Paris, 337:5 (2003), 303–308 | MR | Zbl

[186] Nikolov N., Segal D., “On finitely generated profinite groups. I: Strong completeness and uniform bounds”, Ann. Math., 165 (2007), 171–238 | DOI | MR | Zbl

[187] Nikolov N., Segal D., “On finitely generated profinite groups. II: Products in quasisimple groups”, Ann. Math., 165 (2007), 239–273 | DOI | MR | Zbl

[188] Paterson A. L. T., Amenability, Amer. Math. Soc., Providence, RI, 1988 | MR | Zbl

[189] Pestov V. G., “Amenable representations and dynamics of the unit sphere in an infinite-dimensional Hilbert space”, Geom. Funct. Anal., 10:5 (2000), 1171–1201 | DOI | MR | Zbl

[190] Picaud J.-C., “Cohomologie bornée des surfaces et courants géodésiques”, Bull. Soc. Math. France, 125:1 (1997), 115–142 | MR | Zbl

[191] Pitts D. R., “Perturbations of certain reflexive algebras”, Pacific J. Math., 165:1 (1994), 161–180 | MR | Zbl

[192] Poincaré H., “Mémoire sur les courbes définies par une équation différentielle”, J. de Mathématiques, 8 (1882), 251–296; Poincaré H., ØE uvres, Vol. I, Gauthier-Villars, Paris, 1928 | Zbl

[193] Polterovich L., Rudnick Z., “Stable mixing for cat maps and quasi-morphisms of the modular group”, Ergodic Theory Dynam. Systems, 24:2 (2004), 609–619 | DOI | MR | Zbl

[194] Py P., Quasi-morphismes et invariant de Calabi, , 2005 arXiv:math.SG/0506096 | MR

[195] Rademacher H., “Zur Theorie der Modulfunktionen”, J. Reine Angew. Math., 167 (1932), 312–336 | DOI | Zbl

[196] Raeburn I., Taylor J. L., “Hochschild cohomology and perturbations of Banach algebras”, J. Funct. Anal., 25:3 (1977), 258–266 | DOI | MR | Zbl

[197] Rajagopalan M., “Characters of locally compact Abelian groups”, Math. Z., 86 (1964), 268–272 | DOI | MR | Zbl

[198] Read C. J., “Commutative, radical amenable Banach algebras”, Studia Math., 140:3 (2000), 199–212 | MR | Zbl

[199] Rindler H., “Unitary representations and compact groups”, Arch. Math. (Basel), 58:5 (1992), 492–499 | MR | Zbl

[200] Sally P. J., Jr., Analytic Continuation of the Irreducible Unitary Representations of the Universal Covering Group of $\operatorname{SL}(2,\mathbb R)$, Mem. Amer. Math. Soc., 69, Amer. Math. Soc., Providence, RI, 1967 | MR | Zbl

[201] Sambusetti A., “Minimal entropy and simplicial volume”, Manuscripta Math., 99:4 (1999), 541–560 | DOI | MR | Zbl

[202] Sasvari Z., Positive Definite and Definitizable Functions, Akademie, Berlin, 1994 | MR | Zbl

[203] Segal G., “Cohomology of topological groups”, Symposia Mathematica, Roma, Vol. IV (Teoria Numeri, Dic. 1968, e Algebra, Marzo 1969), Academic Press, London, 1970, 377–387 | MR

[204] Šemrl P., “Hyers–Ulam stability of isometries on Banach spaces”, Aequationes Math., 58 (1999), 157–162 | DOI | MR | Zbl

[205] Šemrl P., “Almost multiplicative functions and almost linear multiplicative functionals”, Aequationes Math., 63 (2002), 180–192 | DOI | MR | Zbl

[206] Shalom Y., “Bounded generation and Kazhdan's property ($T$)”, Inst. Hautes Études Sci. Publ. Math., 90 (1999), 145–168 | DOI | MR | Zbl

[207] Shavgulidze E. T., “Some properties of quasi-invariant measures on groups of diffeomorphisms of the circle”, Russ. J. Math. Phys., 7:4 (2000), 464–472 | MR | Zbl

[208] Shavgulidze E. T., “Properties of the convolution operation for quasi-invariant measures on groups of diffeomorphisms of a circle”, Russ. J. Math. Phys., 8:4 (2001), 495–498 | MR | Zbl

[209] Shtern A. I., “Almost convergence and its applications to the Fourier–Stieltjes localization”, Russ. J. Math. Phys., 1:1 (1993), 115–125 | MR | Zbl

[210] Shtern A. I., “Quasi-symmetry. I”, Russ. J. Math. Phys., 2:3 (1994), 353–382 | MR | Zbl

[211] Shtern A. I., Remarks on Pseudocharacters and the Real Continuous Bounded Cohomology of Connected Locally Compact Groups, Sfb 288 Preprint No 289, 1997 | MR

[212] Shtern A. I., “Almost representations and quasi-symmetry”, Lie Groups and Lie Algebras. Their Representations, Generalizations and Applications, Math. Its Appl., 433, eds. B. P. Komrakov, I. S. Krasil'shchik, G. L. Litvinov, A. B. Sossinsky, Kluwer Academic, Dordrecht, 1998, 337–358 | MR | Zbl

[213] Shtern A. I., “Triviality and continuity of pseudocharacters and pseudorepresentations”, Russ. J. Math. Phys., 5:1 (1998), 135–138 | MR

[214] Shtern A. I., “Quasi-symmetry and amenability”, Abstracts of Reports, ICM-98, Vol. II, Berlin, 1998, 138

[215] Shtern A. I., “A criterion for the second real continuous bounded cohomology of a locally compact group to be finite-dimensional”, Acta Appl. Math., 68:1–3 (2001), 105–121 | DOI | MR | Zbl

[216] Shtern A. I., “Bounded continuous real 2-cocycles on simply connected simple Lie groups and their applications”, Russ. J. Math. Phys., 8:1 (2001), 122–133 | MR | Zbl

[217] Shtern A. I., “Remarks on pseudocharacters and the real continuous bounded cohomology of connected locally compact groups”, Ann. Global Anal. Geom., 20:3 (2001), 199–221 | DOI | MR | Zbl

[218] Shtern A. I., “Continuity of Banach representations in terms of point variations”, Russ. J. Math. Phys., 9:2 (2002), 250–252 | MR | Zbl

[219] Shtern A. I., “Continuity criteria for finite-dimensional representations of compact connected groups”, Adv. Stud. Contemp. Math. (Kyungshang), 6:2 (2003), 141–156 | MR | Zbl

[220] Shtern A. I., “Values of invariant means, left averaging, and criteria for a locally compact group to be amenable as discrete group”, Russ. J. Math. Phys., 10:2 (2003), 185–198 | MR | Zbl

[221] Shtern A. I., “Continuity conditions for finite- dimensional representations of some compact totally disconnected groups”, Adv. Stud. Contemp. Math. (Kyungshang), 8:1 (2004), 13–22 | MR | Zbl

[222] Shtern A. I., “Projective irreducible unitary representations of Hermitian symmetric simple Lie groups are generated by pure pseudorepresentations”, Adv. Stud. Contemp. Math. (Kyungshang), 9:1 (2004), 1–6 | MR | Zbl

[223] Shtern A. I., “Representations of topological groups in locally convex spaces: Continuity properties and weak almost periodicity”, Russ. J. Math. Phys., 11:1 (2004), 81–108 | MR | Zbl

[224] Shtern A. I., “Van der Waerden continuity theorem for arbitrary semisimple Lie groups”, Russ. J. Math. Phys., 13:2 (2006), 210–223 | DOI | MR | Zbl

[225] Shtern A. I., “Van der Waerden's continuity theorem for the commutator subgroups of connected Lie groups and Mishchenko's conjecture”, Adv. Stud. Contemp. Math. (Kyungshang), 13:2 (2006), 143–158 | MR | Zbl

[226] Shtern A. I., “Van der Waerden continuity theorem for the Poincaré group and for some other group extensions”, Adv. Theor. Appl. Math., 1:1 (2006), 79–90 | MR | Zbl

[227] Shtern A. I., “Automatic continuity of pseudocharacters on Hermitian symmetric semisimple Lie groups”, Adv. Stud. Contemp. Math. (Kyungshang), 12:1 (2007), 1–8 | MR

[228] Shtern A. I., “Stability of the van der Waerden theorem on the continuity of homomorphisms of compact semisimple Lie groups”, Appl. Math. Comp., 187:1 (2007), 455–465 | DOI | MR | Zbl

[229] Shulman H., Tischler D., “Leaf invariants for foliations and the van Est isomorphism”, J. Differential Geom., 11 (1976), 535–546 | MR | Zbl

[230] Sidney S. J., “Are all uniform algebras AMNM?”, Bull. London Math. Soc., 29:3 (1997), 327–330 | DOI | MR | Zbl

[231] Sinclair A. M., Smith R. R., Hochschild Cohomology of von Neumann Algebras, London Math. Soc. Lect. Note Ser., 203, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[232] Spronk N., “Operator weak amenability of the Fourier algebra”, Proc. Amer. Math. Soc., 130:12 (2002), 3609–3617 | DOI | MR | Zbl

[233] Stroppel M., “Lie theory for non-Lie groups”, J. Lie Theory, 4:2 (1994), 257–284 | MR | Zbl

[234] Takesaki M., Theory of Operator Algebras. I, Springer, New York, 1979 | MR

[235] Teleman S., “Sur la réprésentation lineaire des groupes topologiques”, Ann. Sci. École Norm. Sup. (3), 74 (1957), 319–339 | MR | Zbl

[236] Thomsen K., “Nonstable $K$-theory for operator algebras”, Internat. J. Math., 4:3 (1991), 245–267 | MR | Zbl

[237] Thomsen K., “Asymptotic homomorphisms and equivariant $KK$-theory”, J. Funct. Anal., 163:2 (1999), 324–343 | DOI | MR | Zbl

[238] Varadarajan V. S., Lie groups, Lie Algebras, and Their Representations, Englewood Cliffs, Prentice Hall, 1974 | MR | Zbl

[239] Van der Waerden B. L., “Stetigkeitssätze für halbeinfache Liesche Gruppen”, Math. Z., 36 (1933), 780–786 | DOI | MR | Zbl

[240] Warner G., Harmonic Analysis on Semi-Simple Lie Groups, Vols. I, II, Springer, New York, 1972

[241] White M. C., “Characters on weighted amenable groups”, Bull. London Math. Soc., 23:4 (1991), 375–380 | DOI | MR | Zbl

[242] Willis G. A., “The continuity of derivations from group algebras: Factorizable and connected groups”, J. Aust. Math. Soc. Ser. A, 52 (1992), 185–204 | DOI | MR | Zbl

[243] Wood G. V., “Small isomorphisms between group algebras”, Glasgow Math. J., 33:1 (1991), 21–28 | DOI | MR | Zbl

[244] Yu G., “The Novikov conjecture for groups with finite asymptotic dimension”, Ann. Math. (2), 147:2 (1998), 325–355 | DOI | MR | Zbl