Projective modules in the classical and quantum functional analysis
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 7, pp. 7-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

Along with the classical version, there are two “quantized” versions for the theory of operator algebra. In these lectures, the fundamental homological notion of a projective module is described in the framework of these three theories. Our initial definitions of the projectivity do not go far away from their prototypes in abstract algebra, however, the principal results concern essentially functional-analytic objects and, as a rule, have no purely algebraic analogues.
@article{FPM_2007_13_7_a0,
     author = {A. Ya. Helemskii},
     title = {Projective modules in the classical and quantum functional analysis},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {7--84},
     publisher = {mathdoc},
     volume = {13},
     number = {7},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_7_a0/}
}
TY  - JOUR
AU  - A. Ya. Helemskii
TI  - Projective modules in the classical and quantum functional analysis
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 7
EP  - 84
VL  - 13
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_7_a0/
LA  - ru
ID  - FPM_2007_13_7_a0
ER  - 
%0 Journal Article
%A A. Ya. Helemskii
%T Projective modules in the classical and quantum functional analysis
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 7-84
%V 13
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_7_a0/
%G ru
%F FPM_2007_13_7_a0
A. Ya. Helemskii. Projective modules in the classical and quantum functional analysis. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 7, pp. 7-84. http://geodesic.mathdoc.fr/item/FPM_2007_13_7_a0/

[1] Golovin Yu. O., “Kriterii prostranstvennoi proektivnosti nerazlozhimoi $CSL$-algebry operatorov”, Uspekhi mat. nauk, 49:4 (1994), 161–162 | MR | Zbl

[2] Polyakov M. E., “Kriterii prostranstvennoi proektivnosti operatornykh algebr, obladayuschikh kanonicheskim predstavleniem”, Izv. vyssh. uchebn. zaved. Matematika, 2001, no. 7, 32–42 | MR | Zbl

[3] Selivanov Yu. V., “Biproektivnye banakhovy algebry”, Izv. AN SSSR. Ser. mat., 43:5 (1979), 1159–1174 | MR | Zbl

[4] Khelemskii A. Ya., Polyakov M. E., “Opisanie morfizmov iz gilbertova modulya nad $C^*$-algebroi v etu algebru”, Mat. zametki, 68:4 (2000), 560–567 | MR

[5] Aristov O. Yu., “Biprojective algebras and operator spaces”, J. Math. Sci., 111:2 (2002), 3339–3386 | DOI | MR | Zbl

[6] Blecher D. P., “A completely bounded characterization of operator algebras”, Math. Ann., 303 (1995), 227–239 | DOI | MR | Zbl

[7] Blecher D. P., Le Merdy C., “On quotients of function algebras and operator algebra structures on $l^p$”, J. Operator Theory, 34:2 (1995), 315–346 | MR | Zbl

[8] Blecher D. P., Paulsen V. I., “Tensor products of operator algebras”, J. Funct. Anal., 99:2 (1991), 262–292 | DOI | MR | Zbl

[9] Dales H. G., Polyakov M. E., “Homological properties of modules over group algebras”, Proc. London Math. Soc. III Ser., 89:2 (2004), 390–426 | DOI | MR | Zbl

[10] Effros E. G., Ruan Z.-J., Operator Spaces, Clarendon Press, Oxford, 2000 | MR | Zbl

[11] Engelking R., General Topology, PWN, Warszawa, 1977 | MR | Zbl

[12] Enock M., Schwartz J.-M., Kac Algebras and Duality of Locally Compact Groups, Springer, Berlin, 1992 | MR | Zbl

[13] Helemskii A. Ya., The Homology of Banach and Topological Algebras, Kluwer, Dordrecht, 1989 | MR | Zbl

[14] Helemskii A. Ya., Banach and Locally Convex Algebras, Oxford Univ. Press, Oxford, 1993 | MR

[15] Helemskii A. Ya., “A description of spatially projective von Neumann algebras”, J. Operator Theory, 32 (1994), 381–398 | MR | Zbl

[16] Helemskii A. Ya., “Description of spatially projective operator $C^*$-algebras, and around it”, Banach Algebras' 97, eds. E. Albrect, M. Mathieu, Walter de Gruyter, Berlin, 1998, 261–272 | MR | Zbl

[17] Helemskii A. Ya., “Projective homological classification of $C^*$-algebras”, Commun. Algebra, 26:3 (1998), 977–996 | DOI | MR

[18] Helemskii A. Ya., “Homology for the algebras of analysis”, Handbook of Algebra, Vol. 2, ed. M. Hazewinkel, Elsevier, Amsterdam, 2000, 151–274 | MR

[19] Helemskii A. Ya., “Wedderburn-type theorems for operator algebras and modules: Traditional and “quantized” homological approaches”, Topological Homology. Helemskii's Moscow Seminar, ed. A. Ya. Helemskii, Nova Science Publishers, Huntington, 2000, 57–92 | MR | Zbl

[20] Paulsen V., “Relative Yoneda cohomology for operator spaces”, J. Funct. Anal., 157 (1998), 358–393 | DOI | MR | Zbl

[21] Pisier J., The Operator Hilbert Space $OH$, Complex Interpolation and Tensor Norms, Mem. Amer. Math. Soc., 585, Amer. Math. Soc., Providence, RI, 1996 | MR | Zbl

[22] Pisier J., An Introduction to the Theory of Operator Spaces, Cambridge Univ. Press, Cambridge, 2002

[23] Pott S., “An account of the global homological dimension theorem of A. Ya. Helemskii”, Ann. Univ. Sarav. Ser. Math., 9:3 (1999), 155–194 | MR | Zbl

[24] Pugach L. I., “Projective and flat ideals of function algebras and their connection with analytic structure”, Math. Notes, 31 (1982), 223–229 | MR | Zbl

[25] Rickart C. E., General Theory of Banach Algebras, Van Nostrand, New York, 1960 | MR | Zbl

[26] Ruan Z.-J., Xu G., “Splitting properties of operator bimodules and operator amenability of Kac algebras”, 16th OT Conf. Proc., 1997, 193–216 | MR | Zbl

[27] Runde V., Lectures on Amenability, Springer, Berlin, 2002 | MR

[28] Segal I. E., “$C^*$-algebras and quantization”, $C^*$-Algebras: 1943–1993. A Fifty Year Celebration, ed. R. S. Doran, Amer. Math. Soc., Providence, RI, 1994, 67–98 | MR

[29] Tabaldyev S. B., “The Sobolev algebra and indecomposable spatially projective operator algebras”, Topological Homology. Helemskii's Moscow Seminar, ed. A. Ya. Helemskii, Nova Science Publishers, Huntington, 2000, 201–210 | MR | Zbl

[30] Wood P. J., The operator biprojectivity of the Fourier algebra, Preprint, 2000 | MR