Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2007_13_7_a0, author = {A. Ya. Helemskii}, title = {Projective modules in the classical and quantum functional analysis}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {7--84}, publisher = {mathdoc}, volume = {13}, number = {7}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_7_a0/} }
A. Ya. Helemskii. Projective modules in the classical and quantum functional analysis. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 7, pp. 7-84. http://geodesic.mathdoc.fr/item/FPM_2007_13_7_a0/
[1] Golovin Yu. O., “Kriterii prostranstvennoi proektivnosti nerazlozhimoi $CSL$-algebry operatorov”, Uspekhi mat. nauk, 49:4 (1994), 161–162 | MR | Zbl
[2] Polyakov M. E., “Kriterii prostranstvennoi proektivnosti operatornykh algebr, obladayuschikh kanonicheskim predstavleniem”, Izv. vyssh. uchebn. zaved. Matematika, 2001, no. 7, 32–42 | MR | Zbl
[3] Selivanov Yu. V., “Biproektivnye banakhovy algebry”, Izv. AN SSSR. Ser. mat., 43:5 (1979), 1159–1174 | MR | Zbl
[4] Khelemskii A. Ya., Polyakov M. E., “Opisanie morfizmov iz gilbertova modulya nad $C^*$-algebroi v etu algebru”, Mat. zametki, 68:4 (2000), 560–567 | MR
[5] Aristov O. Yu., “Biprojective algebras and operator spaces”, J. Math. Sci., 111:2 (2002), 3339–3386 | DOI | MR | Zbl
[6] Blecher D. P., “A completely bounded characterization of operator algebras”, Math. Ann., 303 (1995), 227–239 | DOI | MR | Zbl
[7] Blecher D. P., Le Merdy C., “On quotients of function algebras and operator algebra structures on $l^p$”, J. Operator Theory, 34:2 (1995), 315–346 | MR | Zbl
[8] Blecher D. P., Paulsen V. I., “Tensor products of operator algebras”, J. Funct. Anal., 99:2 (1991), 262–292 | DOI | MR | Zbl
[9] Dales H. G., Polyakov M. E., “Homological properties of modules over group algebras”, Proc. London Math. Soc. III Ser., 89:2 (2004), 390–426 | DOI | MR | Zbl
[10] Effros E. G., Ruan Z.-J., Operator Spaces, Clarendon Press, Oxford, 2000 | MR | Zbl
[11] Engelking R., General Topology, PWN, Warszawa, 1977 | MR | Zbl
[12] Enock M., Schwartz J.-M., Kac Algebras and Duality of Locally Compact Groups, Springer, Berlin, 1992 | MR | Zbl
[13] Helemskii A. Ya., The Homology of Banach and Topological Algebras, Kluwer, Dordrecht, 1989 | MR | Zbl
[14] Helemskii A. Ya., Banach and Locally Convex Algebras, Oxford Univ. Press, Oxford, 1993 | MR
[15] Helemskii A. Ya., “A description of spatially projective von Neumann algebras”, J. Operator Theory, 32 (1994), 381–398 | MR | Zbl
[16] Helemskii A. Ya., “Description of spatially projective operator $C^*$-algebras, and around it”, Banach Algebras' 97, eds. E. Albrect, M. Mathieu, Walter de Gruyter, Berlin, 1998, 261–272 | MR | Zbl
[17] Helemskii A. Ya., “Projective homological classification of $C^*$-algebras”, Commun. Algebra, 26:3 (1998), 977–996 | DOI | MR
[18] Helemskii A. Ya., “Homology for the algebras of analysis”, Handbook of Algebra, Vol. 2, ed. M. Hazewinkel, Elsevier, Amsterdam, 2000, 151–274 | MR
[19] Helemskii A. Ya., “Wedderburn-type theorems for operator algebras and modules: Traditional and “quantized” homological approaches”, Topological Homology. Helemskii's Moscow Seminar, ed. A. Ya. Helemskii, Nova Science Publishers, Huntington, 2000, 57–92 | MR | Zbl
[20] Paulsen V., “Relative Yoneda cohomology for operator spaces”, J. Funct. Anal., 157 (1998), 358–393 | DOI | MR | Zbl
[21] Pisier J., The Operator Hilbert Space $OH$, Complex Interpolation and Tensor Norms, Mem. Amer. Math. Soc., 585, Amer. Math. Soc., Providence, RI, 1996 | MR | Zbl
[22] Pisier J., An Introduction to the Theory of Operator Spaces, Cambridge Univ. Press, Cambridge, 2002
[23] Pott S., “An account of the global homological dimension theorem of A. Ya. Helemskii”, Ann. Univ. Sarav. Ser. Math., 9:3 (1999), 155–194 | MR | Zbl
[24] Pugach L. I., “Projective and flat ideals of function algebras and their connection with analytic structure”, Math. Notes, 31 (1982), 223–229 | MR | Zbl
[25] Rickart C. E., General Theory of Banach Algebras, Van Nostrand, New York, 1960 | MR | Zbl
[26] Ruan Z.-J., Xu G., “Splitting properties of operator bimodules and operator amenability of Kac algebras”, 16th OT Conf. Proc., 1997, 193–216 | MR | Zbl
[27] Runde V., Lectures on Amenability, Springer, Berlin, 2002 | MR
[28] Segal I. E., “$C^*$-algebras and quantization”, $C^*$-Algebras: 1943–1993. A Fifty Year Celebration, ed. R. S. Doran, Amer. Math. Soc., Providence, RI, 1994, 67–98 | MR
[29] Tabaldyev S. B., “The Sobolev algebra and indecomposable spatially projective operator algebras”, Topological Homology. Helemskii's Moscow Seminar, ed. A. Ya. Helemskii, Nova Science Publishers, Huntington, 2000, 201–210 | MR | Zbl
[30] Wood P. J., The operator biprojectivity of the Fourier algebra, Preprint, 2000 | MR