The Chekhov--Fock parametrization of Teichm\"uller spaces and dessins d'enfants
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 6, pp. 217-226.

Voir la notice de l'article provenant de la source Math-Net.Ru

The construction of Chekhov and Fock, which associates a complex structure to a trivalent ribbon graph with real numbers on its edges, is reformulated in cartographic terms. It turns out that the “dessins d'enfants” construction corresponds to zero numbers. Two examples are discussed, and the future development of the theory is suggested.
@article{FPM_2007_13_6_a12,
     author = {G. B. Shabat and V. I. Zolotarskaya},
     title = {The {Chekhov--Fock} parametrization of {Teichm\"uller} spaces and dessins d'enfants},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {217--226},
     publisher = {mathdoc},
     volume = {13},
     number = {6},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_6_a12/}
}
TY  - JOUR
AU  - G. B. Shabat
AU  - V. I. Zolotarskaya
TI  - The Chekhov--Fock parametrization of Teichm\"uller spaces and dessins d'enfants
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 217
EP  - 226
VL  - 13
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_6_a12/
LA  - ru
ID  - FPM_2007_13_6_a12
ER  - 
%0 Journal Article
%A G. B. Shabat
%A V. I. Zolotarskaya
%T The Chekhov--Fock parametrization of Teichm\"uller spaces and dessins d'enfants
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 217-226
%V 13
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_6_a12/
%G ru
%F FPM_2007_13_6_a12
G. B. Shabat; V. I. Zolotarskaya. The Chekhov--Fock parametrization of Teichm\"uller spaces and dessins d'enfants. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 6, pp. 217-226. http://geodesic.mathdoc.fr/item/FPM_2007_13_6_a12/

[1] Zograf P. G., Takhtadzhyan L. A., “Ob uravnenii Liuvillya, aktsessornykh parametrakh i geometrii prostranstva Taikhmyullera dlya rimanovykh poverkhnostei roda 0”, Mat. sb., 174:2 (1987), 147–166 | MR | Zbl

[2] Kontsevich M., “Teoriya peresechenii na prostranstve modulei krivykh i matrichnaya funktsiya Eiri”, Funkts. analiz i ego pril., 25:2 (1991), 50–57 | MR | Zbl

[3] Fok V. V., Chekhov L. O., “Kvantovye modulyarnye preobrazovaniya, sootnosheniya pyatiugolnika i geodezicheskie”, Tr. MIRAN im. V. A. Steklova, 226, Nauka, M., 1999, 149–163 | MR

[4] Shabat G. B., “Kompleksnyi analiz i detskie risunki”, Kompleksnyi analiz v sovremennoi matematike, Fazis, M., 1998, 257–268

[5] Imayoshi Y., Taniguchi M., An Introduction to Teichmüller Spaces, Springer, 1992 | MR | Zbl

[6] Penner R. C., “The decorated Teichmüller space of punctured surfaces”, Comm. Math. Phys., 113:2 (1987), 299–340 | DOI | MR

[7] Serre J.-P., Cours d'arithmétique, Presses Universitaires de France, 1970 | MR | Zbl

[8] Shabat G. B., Voevodsky V. A., “Drawing curves over number fields”, The Grothendieck Festschrift, Vol. III, Progress Math., 88, Birkhäuser, 1990, 199–227 | MR | Zbl