Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2007_13_6_a11, author = {F. B. Pakovich}, title = {On trees covering chains or stars}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {207--215}, publisher = {mathdoc}, volume = {13}, number = {6}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_6_a11/} }
F. B. Pakovich. On trees covering chains or stars. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 6, pp. 207-215. http://geodesic.mathdoc.fr/item/FPM_2007_13_6_a11/
[1] Pakovich F., “O derevyakh, dopuskayuschikh morfizmy na zvezdy ili tsepi”, Uspekhi mat. nauk, 55:3 (2000), 593–594 | MR | Zbl
[2] Flynn E. F., “The arithmetic of hyperelliptic curves”, Algorithms in Algebraic Geometry and Applications, Progress Math., 143, Birkhäuser, Boston, 1996, 165–175 | MR | Zbl
[3] L. Schneps, P. Lochak (eds.), Geometric Galois Actions, Vol. 1: Around Grothendieck's Esquisse d'un Programme, Vol. 2: The Inverse Galois Problem, Moduli Spaces and Mapping Class Groups, London Math. Soc. Lect. Note Ser., 242, 243, Cambridge Univ. Press, Cambridge, 1997 | MR
[4] Leprévost F., “Famille de courbes hyperelliptique de genre $g$ munies d'une classe de diviseurs rationnels d'ordre $2g^2+4g+1$”, Séminaire de théorie des nombres, Paris, France, 1991–1992, Progress Math., 116, Birkhäuser, Boston, 1994, 107–119 | MR | Zbl
[5] Mazur B., “Rational points on modular curves”, Modular Functions of One Variable. V, Lect. Notes Math., 601, Springer, Berlin, 1977, 107–148 | MR
[6] Merel L., “Bornes pour la torsion des courbes elliptiques sur les corps de nombres”, Invent. Math., 124:1–3 (1996), 437–449 | DOI | MR | Zbl
[7] Pakovitch F., “Combinatoire des arbres planaires et arithmétique des courbes hyperelliptiques”, Ann. Inst. Fourier, 48:2 (1998), 1001–1029 | MR
[8] L. Schneps (ed.), The Grothendieck Theory of Dessins D'enfants, London Math. Soc. Lect. Note Ser., 200, Cambridge Univ. Press, Cambridge, 1994 | MR