Balanced words and dynamical systems
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 5, pp. 213-224.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article is devoted to the description of all nonperiodic balanced words with $n$ different letters. A superword $W$ is called balanced if the numbers of equal letters in any two of its factors (subwords) $u_1$ and $u_2$ of equal length differ by at most 1. Balanced words are one of the possible generalizations of Sturmian words. We give a geometric interpretation of nonperiodic balanced sequences over an $n$-letter alphabet.
@article{FPM_2007_13_5_a9,
     author = {A. L. Chernyatiev},
     title = {Balanced words and dynamical systems},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {213--224},
     publisher = {mathdoc},
     volume = {13},
     number = {5},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_5_a9/}
}
TY  - JOUR
AU  - A. L. Chernyatiev
TI  - Balanced words and dynamical systems
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 213
EP  - 224
VL  - 13
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_5_a9/
LA  - ru
ID  - FPM_2007_13_5_a9
ER  - 
%0 Journal Article
%A A. L. Chernyatiev
%T Balanced words and dynamical systems
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 213-224
%V 13
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_5_a9/
%G ru
%F FPM_2007_13_5_a9
A. L. Chernyatiev. Balanced words and dynamical systems. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 5, pp. 213-224. http://geodesic.mathdoc.fr/item/FPM_2007_13_5_a9/

[1] Belov A., Kondakov G., “Obratnye zadachi simvolicheskoi dinamiki”, Fundament. i prikl. mat., 1:1 (1995), 71–79 | MR | Zbl

[2] Sinai Ya. G., Vvedenie v ergodicheskuyu teoriyu, FAZIS, M., 1996

[3] Berstel J., “Recent results on Sturmian words”, Developments in Language Theory. II, World Scientific, River Edge, NJ, 1996, 13–24 | MR | Zbl

[4] Graham R. L., “Covering the positive integers by disjoints sets of the form $\{\,[n\alpha+\beta]:n=1,2,\dots\}$”, J. Combin. Theory. Ser A, 15 (1973), 354–358 | DOI | MR | Zbl

[5] Hubert P., “Well balanced sequences”, Theoret. Comput. Sci., 242 (2000), 91–108 | DOI | MR | Zbl

[6] Lothaire M., “Combinatorics on words”, Encyclopedia of Mathematics and Its Applications, V. 17, Addison-Wesley, Reading, 1983 | MR | Zbl

[7] De Luca A., “Sturmian words: Structure, combinatorics and their arithmetics”, Theoret. Comput. Sci., 183 (1997), 45–82 | DOI | MR | Zbl

[8] De Luca A., Varricchio S., “Combinatorial properties of uniformly recurrent words and an application to semigroups”, Internat. J. Algebra Comput., 1:2 (1991), 227–246 | DOI | MR

[9] Morse M., Hedlund G. A., “Symbolic dynamics. II. Sturmian trajectories”, Amer. J. Math., 62 (1940), 1–42 | DOI | MR

[10] Newman M., “Roots of unity and covering sets”, Math. Ann., 191 (1971), 279–282 | DOI | MR

[11] Tijdeman R., “Decomposition of the integers as a direct sum of two subsets”, Number Theory, Number Theory Seminar Paris 1992–1993, ed. S. David, Cambridge Univ. Press, Cambridge, 1995, 261–276 | MR | Zbl

[12] Tijdeman R., “Fraenkel's conjecture for six sequences”, Discrete Math., 222:1–3 (2000), 223–234 | DOI | MR | Zbl

[13] Vuillon L., “Balanced words”, Bull. Belg. Math. Soc. Simon Stevin, 10 (2003), 787–805 | MR | Zbl

[14] Weyl H., “Über der Gleichverteilung von Zahlen mod 1”, Math. Ann., 77 (1916), 313–352 | DOI | MR | Zbl